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Abstract: A circle C separates two planar sets if it en-
closes one of the sets and its open interior disk does not meet
the other set. A separating circle is a largest one if it cannot
be locally increased while still separating the two given sets.
An ©(nlog n) optimal algorithm is proposed to find all largest
circles separating two given sets of line segments when line
segments are allowed to meet only at their endpoints. This
settles an open problem from a previous paper.[3] In the gen-
eral case, when line segments may intersect Q(n?) times, our
algorithm can be adapted to work in O(ne(n)logn) time and
O(na(n)) space, where a(n) represents the extremely slowly
growing inverse of Ackermann function.
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1 Introduction

Let C denote a family of Jordan curves in the plane. Two
sets P and Q in the plane are C-separable if there exists
£ € C, such that every point of one of these sets lies in
the closed region inside &, and every point of the other
set lies in the closed region outside £. In this paper we
restrict our consideration to elements of C being circles.
A circle C(X,r), with center X and radius r, separating
P from Q@ is said to be a largest separating circle if there
is a neighbourhood B of X such that there is no separat-
ing circle with radius strictly greater than r centered in
B. We propose an optimal algorithm to find all largest
circles separating two given sets of line segments P and
Q.

Some previous research on this subject concerned
polygonal separability[10, 1, 19] or its extension to higher
dimensions, where the construction of a polyhedron with
small number of faces, separating two given polyhedra
was considered.[6, 18, 4] Line or hyperplane separability
of two given sets of points may be solved using linear
programming.[17]

The problem of circular separability was first asked in
the context of applications in pattern recognition and im-
age processing - recognition of digital disks.[12, 11] Kim
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and Anderson[12] gave a quadratic algorithm to deter-
mine the circular separability of two finite sets of points.
Bhattacharya[2] computed in O(nlogn) time the planar
region at which may be centered all circles separating two
given point sets. O’Rourke, Kosaraju and Megiddo[20]
presented optimal algorithms for the circular separabil-
ity of point sets. The first one determine the circular
separability of two given point sets and find the smallest
circle separating circle in linear time and the second one
find all the largest separating circles in O(nlogn) time.
These authors have used the paraboloid transformation
which convert the smallest separating circle problem for
two points sets into a convex quadratic minimization
problem in three dimensions. This method generalizes
to spherical separability in higher dimensions, however
it does not apply to the problem of circular separabil-
ity of two simple polygons. In this case, the method
leads to the computation of the convex hull of the seg-
ments of parabola in 3D which is an unsolved problem.
This problem has been already considered[3] and a lin-
ear algorithm to find the smallest separating circle of two
polygons has been proposed.

In the present paper we consider the problem of find-
ing all largest circles separating two given sets of line
segments. We suppose that different line segments may
meet only at their endpoints. An O(nlogn) algorithm
is given to solve this problem. This settles an open ques-
tion from previous paper,[3] asking for the largest circle
separating two simple polygons. As our algorithm works
in the case when segments degenerate to single points,
it may be considered as a generalization of a result from
O’Rourke, Kosaraju, and Megiddo result.[20]

Our algorithm can be adapted to work in the gen-
eral case when line segments may intersect. In this
case, it works in O(na(n)log?n) deterministic time or
in O(na(n)logn) randomized time and O(na(n)) space,
where a(n) is the extremely slowly growing inverse of
Ackermann function.

2 Preliminaries

We will refer to the hierarchical representation of convex
polygons introduced by Dobkin and Kirkpatrick.[14, 8]
Originally, such a representation was introduced in the
context of the point location problem, in which the con-
struction of a hierarchy of planar maps permitted point
location queries in optimal O(nlog n) time.
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Hereafter, we use outer hierarchical representations.
An outer hierarchical representation of a convex polyhe-
dron D is a nested sequence Dy D D; D ... D Dy of
convex polyhedra, such that

1. Dy is a tetrahedron,
2. Dy is the polyhedron D,

3. the set F; of faces of D; is obtained from F;; by re-
moving a subset ;41 of pairwise non adjacent faces
of D;;;. Extending the remaining faces Fi41 \ [it1
will then form polyhedron D;.

It may be proved that in any convex polyhedron D;4;
it is possible to find a constant fraction of its faces of
bounded degree which are pairwise non adjacent. As
a consequence, the hierarchy of a convex polyhedron D
with n vertices has a depth ¥ = O(logn). The whole
hierarchical representation takes O(n) space and it may
be computed in O(nlog n) time. After computing the
hierarchical representation of a convex polyhedron, line
intersection queries may be performed in O(log n) time.

The paper will use a well-known transformation
®, mapping circles in the zy-plane to points in the
three-dimensional space which we will call the space of
circles. According to this transformation, the image of
a circle of radius 7, centered at (zo,¥o), is the point
(z0,¥0,7)- Observe that images of the circles passing
through a point (z1,y:1) lie on the surface of a cone
originating at (z1,y1,0) with vertical axis and 45 de-
grees apex angle. Such a cone will be called a lift-
ing cone and denoted by LC(z1,y1). Observe as well,
that the image of a circle tangent to a given line [ lie
on a halfplane containing [ and having 45 degree angle
with zy-plane. There are two such lfting halfplanes,
LH~(l) and LH*(l), denoting the images of the circles
tangent to [ and centered, respectively, on the left- or the
right-hand side of the oriented line . The space of circles
in fact is a halfspace, as only points with non-negative
z-coordinate belong to it.

Let S denote the set of line segments (sites)
$1,82,...,5m in the plane. The closest site Voronoi di-
agram of S, noted CSVor(S), is the partition of the
plane into m regions, such that any point belonging to
the ¢-th region is closer to s; than to any other segment
of S. Suppose that we want to decide whether a query
disk contains any point of a given set S. Such a query
may be answered quickly if the closest site Voronoi dia-
gram of the set S has been precomputed. The center of
the query disk is localised in a Voronoi cell determining
the closest segment s; of S. The radius of the disk is
then compared to the distance from its center to s;.

Similarly, in order to decide whether a query disk con-
tains entirely a given set of line segments S, we will pre-
compute the furthest site Voronoi diagram of S, noted
FSVor(S), which is just the furthest site Voronoi dia-
gram of the vertices of the convex hull, CH(S), of S.
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Case 1
Figure 1: For Lemma 1

For the purpose of the paper it is useful to intro-
duce the following three-dimensional structure, which
contains all the information included in the furthest
site Voronoi diagram FSVor(S). For each vertex v
of CH(S), take a cone originating at v having verti-
cal axis and 45 degrees apex angle. Let UE(S) de-
note the upper envelope of all such cones. A point of
UE(S) corresponds, in terms of transformation @, to a
tangent enclosing circle for .S that is a circle which en-
closes S but touches S in some points. The portions
of cones belonging to UE(S) are limited by segments
of hyperbola, where two neighbouring cones meet. Ob-
serve that the projection of these segments of hyperbola
onto the zy-plane forms the furthest site Voronoi dia-
gram FSVor(S). All of its cells are convex, unbounded
polygonal regions.

3 Largest Separating Circles.

In the sequel, a segment is said to lie inside (resp. out-
side) a given circle C if it is included in the closed region
which is inside (resp. outside) C; such a segment and
the circle C are allowed to be tangent which mean that
they meet in a single point. Two sets of segments P and
Q are said to be in general position if they do not admit
parallel segments and if there is no circle tangent to four
segments of P U Q.

A largest circle C separating two given sets of seg-
ments P and Q must be constrained in at least three
points by the elements of P and Q. Suppose that P lies
inside and Q lies outside circle C. When the two sets of
segments are in general position, it is easy to see that C
either is tangent in three points to the elements of Q, or
is tangent in two points to the elements of () and meets
a vertex of the convex hull CH(P). We can conclude
that a largest separating circle must verify one of the
two conditions given by the following lemma. The proof
of this lemma is straightforward.

Lemma 1 If C is a largest circle separating two given
sets of segments P and Q in general position, P lying
inside and Q lying outside C, then one of the following
two conditions must be verified (see Figure 1) :

1. C is tangent to three segments of Q in points g1, g2
and g3 such that each of the three arcs determined
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on C by these points is smaller that a semicircle (see
Fig. 1, case 1).

2. C is tangent to two segments of Q in points ¢ and
g2, and meet the convez hull CH(P) in a vertez p;,
, such that the arc of C ectending from g1 through
p1 to qo is smaller that a semicircle, (see Fig 1, case

2).

If Q admits parallel segments, a largest separating cir-
cle may be tangent to two parallel segments of Q without
meeting P or touching a third segment in @ ( see Fig. 2,
case 1’ or 2'). In such a case there is an infinite number
of circles tangents to those two segments of  which are
largest separating circles according to the above defini-
tion. However all those circles are deduced by translation
from two extremes circles which,in addition to the two
contact points with parallel segments of @, have a third
contact point with either set P or Q. Our algorithm re-
strict to report only the largest separating circles that
have at least three contact points. When point sets P
and @ are not in general situation, those circles may be
in one of the degenarate case listed in the lemma below.

Lemma 1 (bis) Let C be a largest circle separating two
sets of segments P and Q, such that P lies inside, Q lies
outside and C has at least three contact points with sets
P and Q. Then, in addition to cases 1 and 2 of lemma 1
above, C may be in one of the following degenerate cases
(see Fig. 2) :

1'. C is tangent to two parallel segments of Q (in two
antipodal points) and to a third segment in Q.

1". C touches Q in two pairs of antipodal points.

2'. C is tangent to two parallel segments of Q and meet
a vertez of CH(P).

2", C touches Q in two antipodal points ¢1 and g2 and

P in two vertices p1 and ps such that points Pi, qi,

p2, and g2 appear in that cyclic order on circle C.

4 Intersecting Upper Envelope of
Cones.

In this section we will apply the idea of hierarchical rep-
resentation of convex polyhedra to some other types of
surfaces.

For any set S = s1, 82, ..., S, of points (sites) in the
zy-plane let LC(S) denote the family of lifting cones
LC(s1),LC(s2),...,LC(sy). For each cone only the part
with the positive values of z-coordinate is taken into con-
sideration. We will be looking for the points of intersec-
tion of UE(S), the upper envelope of the family of cones
LC(S), with the query curves belonging to a family F
including some lines, parabolae and hyperbolae.

D
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),
S

Figure 2: Degenerate cases of Lemma 1

Case 17

Theorem 2 Let LC(S) be a family of lifting cones and
F be a family of lines in the three-dimensional space.
It is possible to preprocess the set of cones LC(s;), 1 =
1,2,...,n, in O(nlog n) time and O(n) space, so that the
intersections of UE(S) with a query line | may be found
in O(log n) time.

Proof (sketch): According to an earlier observation,
the projection on the zy-plane of the segments of hy-
perbola, along which the portions of cones contribut-
ing to UE(S) meet, is a straight-line planar subdivi-
sion whose cells are unbounded. It is possible to find,
in time proportional to the graph size, a fraction of its
faces, which are pairwise non adjacent and such that
each face has a bounded number of edges. After elimi-
nating from S the origins of the cones corresponding to
these faces we are left with a subset S’ of S. Continuing
this process we construct a hierarchical representation
of sets Sy C S, C ... C Sk = S, where S; is a single
point. We obtain as well a hierarchy G(S1), G(S2), .. ,
G(Sk) of k = O(log n) straight-line planar subdivision,
such that any face G(S;) intersects a bounded number
of faces of G(S;—1) and vice versa. Using Kirkpatrick’s
techniques,|[14] this hierarchical representation may be
found in O(nlog n) time and O(n) space.

Observe that because of the convexity of the intersec-
tion of the cones in LC(S), [ intersects U E(S) in at most
two points. In fact, if [ intersects UE(S) in two points
it intersects each UE(S;), + = 1,2,...,k, in two points
and if [ intersects UE(S) in a single point it intersects
each UE(S;) in a single point as well. Suppose that we
know the intersection x of a query line [ with UE(S;-1),
and the localisation z' of the projection of z in one of
the faces of G(S;—1). In constant time, we can compute
the intersection of I with UE(S;), as well as the face of
G(S;) containing its projection. In k = O(log n) steps,
each one taking a constant time, we can compute the
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intersection of [ with UE(S). O

Note that, as UE(S;) is contained in UE(S;-1), it may
happen that [ intersects UE(S;—1) but not UE(S;), so
after some steps of the search the process may detect no
intersection points.

Suppose that, instead of a line, we can have as a query
any curve ( € F belonging to one of the three following
categories:

1. ( = LC(z1,y1) N LC(z2, y2), intersection of two lift-
ing cones, for any two points (21,¥1) and (z2,y2) of
the zy-plane,

2. ( = LC(z1,v1) N LH*(l), intersection of a lifting
cone with a lifting halfplane, for any point (z1,%1)
and any oriented line / of the zy-plane,

3. ( = LH*(l3) n LH*(l3), intersection of any two
lifting halfplanes.

Family F' contains now branches of hyperbola, parabola
and lines. It is possible to prove that the above theorem
generalises then to

Theorem 3 Let F be a family of curves in three dimen-
sions such that any curve ( € F is an intersection of
two surfaces, each of these surfaces being either a lifting
cone or a lifting halfplane.

1. There are at most two intersections of ( € F with

UE(S'), for any S’ C S.

2. It is possible to preprocess the cones LC(S) in
O(nlog m) time and O(n) space, so that the inter-
sections of UE(S) with a query curve { € F may be
found in O(logn) time.

Proof: omitted

5 The Algorithm.

Before turning our attention to the algorithm we make a
few simple observations stated in the following lemmas.
They concern the images of some families of circles in
the space of circles.

Lemma 4 The image with respect to the transformation
® of a family of circles passing through two given points
s1 and s is the branch of hyperbola being the intersection
of LC(s1) and LC(s2)

Lemma 5 The image with respect to the transformation
® of a family of circles tangent from the right-hand side
to a given oriented line l;, and passing through a given
point 81 lying on the right-hand side of l; is the parabola
being the intersection of the cone LC(sy) with the half-
plane LH*(1;)

Lemma 6 The image with respect to the transformation
® of a family of circles tangent from the right-hand side
to two given oriented lines l; and ls is the line of inter-
section of two halfplanes LH*(l;) and LH™ (I2)

To find the largest circles separating two sets of line
segments P and @ we will run twice the algorithm given
below. First the algorithm looks for the largest circles
C enclosing P and leaving @ outside. Both P and @
may meet a largest circle C in a finite number of points,
but they must be disjoint with the open regions lying,
respectively, inside or outside C. In the second run of
the algorithm the roles of P and @ are reversed. The
algorithm will report all largest separating circles with
at least three contact points.

The idea of the algorithm is to search for all the cir-
cles which may possibly verify one of the conditions of
Lemma 1 or 1(bis). Consider first conditions 1, 1’ or 1”.
Any circle C tangent to @ in three points and not con-
taining any point of @ inside C is centered at a vertex of
CSVor(Q), the closest site Voronoi diagram of the set of
line segments @. Each such center of a candidate circle
is point-located in some face of FSVor(P), the furthest
site Voronoi diagram of the vertices of the convex hull
CH(P) of the set of line segments P. This way we can
compute the distance from the center of C' to the fur-
thest point of P. If this distance appears to be smaller
that the radius of C, C separates P and Q. In such a
case, if C verifies conditions 1, 1’ or 1”, it is reported as
a largest separating circle.

When the separating circle C verifies the conditions 2
of Lemma 1 or one of the degenerated condition 2’ and
2", it must be internally tangent to some vertex p; of
CH(P) and externally tangent to some two points ¢
and ¢z of Q. The first condition means that ®(C) lies
on UE(P), the upper envelope of the lifting cones of
the vertices of CH(P), within the face corresponding to
vertex p;. At the same time, the center of C lies then
on a Voronoi edge of CSVor(Q) equidistant from ¢; and
g2. Suppose that ¢; and g2 are internal points of two
edges of @, then in the space of circle $(C) lies then on
a segment belonging to a line determined according to
Lemma 6. Similarly, if ¢; or ¢» are endpoints of segments
of Q, the corresponding edge of CSVor(Q) is mapped
in the space of circles to a segment of parabola or to
a segment of hyperbola as stated in Lemmas 4 and 5.
Thus, to find the largest separating circles which fulfill
conditions 2, 2’ or 2”, it is sufficient to scan, one by
one, all the O(n) edges of CSVor(Q). For each edge of
CSVor(Q), the segment of line, parabola or hyperbola
which is the transformed of the largest circles centered
on this edge is intersected with the enveloppe UE(P).
The hierarchical representation of U E(P) is used for this
purpose. Each point of intersection corresponding to a
circle which verify one of the conditions 2, 2’ or 2" is
reported as a largest separating circles.
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Output:

Algorithm All Largest Separating Circles

Input: Two sets of line segments P and @Q with a total of n

segments meeting only at their endpoints.

All largest separating circles C, with P inside, Q outside
and at least three contact points.

1. Compute F'SVor(P) the furthest site Voronoi diagram
of the vertices of the convex hull CH(P) of set P; com-
pute UE(P) the representation of FSVor(P) in the
space of circles.

2. Compute the hierarchical representation of UE(P).

3. Compute CSVor(Q), the closest site Voronoi diagram
of the set Q.

4. for each vertex v of CSVor(Q)

4.1. Compute the distance d(v, Q) from v to Q.

4.2. Locate v in a face of F.SVor(P) and compute
d(v, FSVor(P)), the distance from v to the fur-
thest vertex of P.

if d(v, Q) >=d(v, FSVor(P)) and one of the con-
ditions 1, 1’ or 1” holds for circle C' centered in v
with radius d(v, Q) then Output(C).

4.3.

5. for each edge e of CSVor(Q)

5.1. Compute a curve segment z in the space of cir-
cles corresponding to largest circles centered on e
and externally tangent to Q and the curve ¢ (line,
parabola or hyperbola) supporting z.

5.2. Compute z; and z2, the two intersections of { with

UE(CH(P)) if they exist.
for ¢ = 1,2 if z; € z and z; is the image of a
circle C; such that conditions 2, 2’ or 2" hold then
Output(C;).
End of the Algorithm

Correctness of the algorithm is obvious considering
Lemmas 1, 1(bis) and the previous discussion.

5.3.

6 Complexity of the Algorithm.

The computation of the furthest site Voronoi diagram
in step 1 takes O(nlogn) time and O(n) space by well
known algorithms.[13] To obtain in linear time the upper
envelope UE(P), each of O(n) faces of FSVor(P) is
transformed into a portion of a cone, and each of the
O(n) edges of FSVor(S(P)) is transformed into a segment
of hyperbola.

The hierarchical representation of UE(P) from step
2 is computed in O(nlog n) time and O(n) space by
Theorem 3.

The Voronoi diagram of the set of line segments from
step 3 is computed within O(nlog n) time and O(n)
space using one of the well known algorithms.[15]

G R st
T

Figure 3: The lower bound example

The for loop from step 4 is run O(n) times. Step 4.1
takes a constant time. The point location in the pla-
nar map FSVor(CH(P)) from step 4.2 takes O(logn)
time, for example using Kirkpatrick technique.[14] Ob-
serve that a hierarchical representation of FSVor(P),
needed for this approach is implied by the structure com-
puted in step 2. In step 4.3, in time proportional to the
degree of vertex v we check whether one of the condi-
tions 1, 1’ or 1” is met. Over all iterations of the foor
loop the complexity of step 4.3 is O(n). Thus the total
complexity of the for loop from step 4 is O(nlogn).

Similarly, the for loop from step 5 is executed O(n)
times. Depending on the case, the curve segment z
needed in step 5.1 is computed using one of the lemmas
4,5 or 6. By Theorem 3, there are at most two intersec-
tions of z with UE(CH(P)) and they may be computed
in O(logn) time. In constant time we then check in step
5.3 if the candidate circle meets one of the conditions 2,
2" or 2" in order to report it as a largest separating circle.
We conclude that the loop 5 takes O(nlog n) time.

We have thus proved

Theorem 7 For two sets of line segments P and Q with
a total of n segments meeting only at their endpoints, it
is possible to compute in O(n log n) time and O(n) space
all largest circles separating P and Q.

Once all largest separating circles have been reported,
the largest one can be easily found comparing their radii.

In order to show the optimality of our result we sketch
the proof of a Q(n log n) lower bound of our problem.[20]
It is obtained by reduction of the maximum gap problem
for which the Q(n log n) lower bound was established
in the linear decision-tree model of computation.[16]
Let X = z,,%2,...,2, be a set of points on the real
line between Zin and Tmer for which the maximum
gap must be computed, i.e. the pair of consecutive
points of X maximizing the distance between them. Let
set @ contain n line segments, each one extending be-
tween the points (z;,—1) and (z;,0), ¢ = 1,2,...,n and
the (n + 1)-th segment s extending between the points
(Zmins Tmaz — Tmin) a0d (Tmaz,Tmaz — Tmin). Let P
be a single point of coordinates (Zmirtinez Zmaz=Zmin)
Clearly, the largest circle separating P and @ is tangent
to s and passes through segments at z; and z; defining
the maximum gap in X (see Figure 3).
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It follows from the algorithm that there is at most
O(n) largest separating circles with at least three contact
points. Indeed, for ‘each of O(n) vertices of CSVor(Q)
there is at most one such candidate separating circle, and
for each of O(n) edges of CSVor(Q) there are at most
two candidate circles. The above example where values
of X are equally spaced shows that there are sets P and
Q actually admitting O(n) largest separating circles.

7 Conclusions.

The paper gives an efficient algorithm for the problem of
finding all largest circles separating two given sets of line
segments. The solution is proven optimal in the linear
decision-tree model of computation. However, for the
general algebraic tree model, the lower bound for the
maximum gap problem is not known so far. Thus in
this model of computation the optimality of our solution
remains open.

Note that the previous discussion does not imply an
Q(n log n) lower bound for the problem of the largest
circle separating two given polygons. Indeed, it is not
possible to build in linear time a polygon using the set
of line segments from Figure 3.

It was supposed in this paper that the line segments
meet only at their endpoints. For two arbitrary sets
of segments we can obtain (n?) points of intersec-
tion. However, the following corollary states that we can
tackle the problem of largest circles separating two arbi-
trary sets of line segments in less than quadratic time.

Corollary 8 For two sets of line segments P and Q con-
taining a total of n segments, it is possible to compute in
O(na(n)log?n) deterministic time or in O(na(n)logn)
randomized time and O(na(n)) space all locally largest
circles separating P and Q.

To prove this, observe that if there exists a circle C sep-
arating two sets of line segments P and @, P lying inside
and Q lying outside C, it is sufficient to take into consid-
eration separation of the external cell of the arrangement
of line segments of set P, and, containing it, a single cell
of the arrangement of line segments of Q. The complex-
ity of such cell[9] is at most O(na(n)) and it may be
computed in O(na(n)log®n) deterministic time[5] or in
O(na(n)logn) randomized time.[7] Once both cells are
computed, we can apply our algorithm to O(na(n)) por-
tions of line segments which do not meet outside their
endpoints.

An interesting open problem is to extend the algo-
rithm onto some other classes of objects like, for exam-
ple, circles or figures bounded by line segments and cir-
cular arcs.

The original approach of the hierarchical
representation[14] was applied to the problem of
intersection of convex polyhedra (envelopes of planes
in three dimensions) by query lines. The approach
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presented here applied this idea to the upper envelopes
of some families of cones. Moreover, not only lines are
used as the intersection queries, but also some other
curves as parabola and hyperbola. It is of independent
interest to extend this idea to some other families of
surfaces.
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