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Abstract

In the earlier studies on collision-free motion
planning the main aim has been to minimize
the time taken by the moving robot to reach
the goal. In this paper we discuss the prob-
lem of planning the velocity for a robot along
the shortest distance path between two points
in space, avoiding collision with the moving
obstacles. By using a space-time transforma-
tion we show that it is possible to determine
a collision-free motion along the straight line
joining the source point to the goal point in
O(nlogn) time, optimizing on the time taken
for the shortest length path.

Introduction

The problem of motion planning is to deter-
mine the existence of a path for a moving object
from a given source point to a desired destina-
tion point, avoiding collision with any obstacles
in the environment. The static domain, where
the obstacles are stationary, has been studied
extensively in [12], [6] and [4]. More specifi-
cally, the problem of computing the Euclidean
shortest length path in the plane amidst sta-
tionary obstacles has been studied in [8], [10],
[5] and [9]. Tools such as the visibility graph
and the shortest path map have been used to
map the connectivity of free space and the
shortest path is obtained by searching these
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datastructures. In the static domain the short-
est path will necessarily coincide with the time-
minimal path, assuming the moving obstacle is
moving at all stages with its maximum veloc-
ity modulus. However in the dynamic domain,
when we consider motion planning in the pres-
ence of moving obstacles, the shortest length
motion may not necessarily coincide with the
time-minimal motion.

Most earlier studies on motion planning in
dynamic domains have considered time mini-
mal paths from the source to the goal as in [7]
and [1]. Here the prime consideration has been
to minimize the time taken to reach the goal,
and hence during most or all sections of its
path, the robot Z moves at its maximum speed
Umaz- HOWwever in certain situations it will be
more relevant to consider paths of minimum
distance, rather than paths of minimum time,
especially when the cost per unit length of dis-
tance traveled is high, or when it is just suffi-
cient that Z reaches the goal. In this paper we
consider the case of finding the shortest length
path from a start point S to a destination point
G, in the presence of moving obstacles in the
environment. The algorithm has been devel-
oped for obstacles moving in the plane.

When we consider the case of finding the Eu-
clidean shortest length path in the presence of
moving obstacles, the problem becomes simple,
since the shortest length path is trivially along
the line joining the source and the goal. Note
however that this is not necessarily a time min-
imal path. The algorithm has to mainly ensure
that the path defined does not collide with any
of the moving obstacles as it travels from the
start to the destination. Since the prime cri-
terion is to minimize the distance traveled, it
is possible that along its path the object may
travel with speed less than its maximum speed




Umar I Some sections to avoid collision, and
may even be stationary for some finite amount
of time.

Terms and definitions

The moving object or robot will be denoted by
Z. Z is a point object. The problem of find-
ing the Euclidean shortest distance path in the
plane, in the presence of moving obstacles may
be stated as:

Given an environment containing polygonal ob-
stacles in translational motion, where n is the
total number of vertices in the scene, with Z
initially at S (the start point), and Vp,,, being
the mazimum speed of Z, determine the speed
profile for Z along SG such that the time taken
to reach G (the goal point) is minimized, and
such that at all stages Z travels with a speed
less than or equal to Vy,q, avoiding collision
with any of the moving obstacles; else report
that @ motion cannot be found.

We have approached the problem using the
space-time transformation (described subse-
quently) and the plane sweep method. The
obstacles are all simple polygons, each having
a velocity modulus greater than zero ( we first
deal with the case of constant velocity and then
consider acceleration ). S is the start point and
G the goal point. We may assume that SG lies
along the positive z-axis with S at (0,0). We
shall use SG to refer to the open line segment
joining S and G. Our algorithm is based on the
assumption that all the obstacles are moving
with nonzero velocity modulus and that there
is no collision between the obstacles.

Frame of reference

The shortest length path is along the line join-
ing S and G, which in our case is along the
z-axis, starting at the origin. The path of Z
has to be planned avoiding collision with the
obstacles as they cross the z-axis. One way of
capturing the motion of Z amidst the obstacles
is to map the positions of the obstacles as they
cross the z-axis and the time at which they
cross the z-axis, to an z —t frame of reference.
We shall consider only those obstacles which in-
tersect the z-axis at some point of time in their
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Fig-1: (a) Obstacles in the xy-plane
(b) Obstacles in the xt-frame

path. For each such obstacle, we can compute
the time at which each vertex crosses the z-axis
and also the position at which it crosses this
axis. Given the initial position of each vertex,
and the speed of each obstacle with its direc-
tion of motion, this computation can be done
in constant time for each vertex. The position
and time are then mapped onto the z-t frame,
with the position along the z-axis, and the time
along the y-axis.
Now, in this new frame of reference we have a
snapshot of each obstacle as it crosses the z-
axis. Since we wish to find a collision-free path
for Z from S to G (where S and G are on the
z-axis) and since collisions may occur precisely
at the time when the obstacles cross the z-axis,
in this new frame of reference we may consider
each obstacle to be stationary for the time un-
der consideration and plan a collision free path
for Z accordingly. For example, Fig-1(a) shows
a scene with three moving obstacles and Fig-
1(b) shows the same obstacles transformed to
the z — t frame of reference. For the case of
constant velocity, the obstacle edges map on
to straight line segments. This will not be the
case for acceleration, however we consider only
constant velocity in the following discussion.
Since no two obstacles collide in the z — y
frame of reference, no two obstacles overlap in
the z — t frame of reference, except perhaps at
the edges. We are interested in finding a path
for Z along SG from z = 0 to z = G, avoid-




ing collision with any obstacle. The position
and instant when such a collision is possible
with a particular point on or in the interior of
a polygon is given by the ordinate and abscissa
of that point in the 2 — t plane. Now, in the
new frame of reference, our problem may be
restated as:

Determine a path for an object Z, moving
amidst stationary obstacles (in the  —t frame)
from a point S on the line z = 0 at timet = 0,
to a point on the line ¢ = G, minimizing the
time taken, i.e. meeting the line x = G at the
lowest possible point.

Properties of the path of Z in the z —1¢
frame

Let vppqr be the maximum speed attainable by
Z and let m = 1/vq,. In the z — ¢ plane, Z
is initially at the point (0,0) and has to reach
some point on the line 2 = G, avoiding collision
with the interior of any of the obstacles (which
may be considered stationary in the new frame
_ of reference.) We shall now consider the prop-
erties of the trajectory of Z in this new frame
of reference. (The word trajectory is used here
since we are referring to the speed of Z along
its path as a function of time.)

1. Assuming that at each stage Z moves with
uniform speed, changing its speed only
when it encounters an edge or a vertex, the
path of Z will be the union of piecewise lin-
ear line segments, which do not intersect
the interior of any obstacle.

2. No line segment constituting a path of Z
will have slope less than m, since a slope
less than m implies Z moves at a speed
which is greater than v,,,, which is not
possible. A section of the trajectory par-
allel to the y-axis implies Z is stationary
at this point.

Constant Velocity
A visibility edge is defined to be a straight
line segment of positive slope > m, joining two

vertices in the planar z—t graph G, such that it
does not intersect the interior of any obstacle.
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A path of Z is defined to be the union of
piecewise linear segments each of which have
positive slope > m and do not intersect the
interior of any obstacle. It can be seen that a
speed profile ( path in the z — t frame ) for Z
can be obtained as a union of obstacle edges
and visibility edges ( each of slope > m ) by
the visibility graph method which takes O(n?),
where n is the number of vertices in the z — ¢
frame.

Two paths are said to be equivalent if they
start and terminate at the same point.

A path is said to be an a-path if it is the
union of piecewise linear line segments which
do not intersect the interior of any obstacle and
are

1. either vertical or

1

Umaz

2. have a slope =m =

3. part of an edge of an obstacle whose slope
is > m.

Lemma There exists an equivalent a-path
for every wvisibility edge that is not an obstacle
edge of the straight line planar graph G in the
z —t frame.

The proof of the above lemma has been omit-
ted. The lemma ensures that for every path of
Z in the z—t frame consisting of visibility edges
and obstacle edges of slope > m, an equivalent
o-path can be obtained. It suffices thus to look
for an a-path that intersects the line z = G at
the lowest possible point. We find such a path
by a plane sweep technique.

Algorithm

1. Perform a horizontal plane sweep of the
obstacles in = — t space from left to right. The
sweep line is vertical. The sweep line status
is a sorted list of edges intersecting the sweep
line. This list can be maintained with O(logn)
operations at each vertex. The sweep line is
initially # = S and the line y = 0 intersects it.
The sweep line stops at every vertex.

At every vertex v, add the vertical line seg-
ment from v to the obstacle edge intersecting
the sweep line just below it, the vertical edge
added should not intersect the interior of any
obstacle. Maintaining the sweep line status and
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finding the obstacle edge just below v can be
done in O(log ) time. Therefore the total time
taken for this sweep is O(nlogn).

At each vertex, at most one new vertical line
segment and one new point are added to the
graph. Therefore O(n) points and edges are
added to the graph.

2. Perform a plane sweep with a sweep
line of slope m = % in a direction perpen-
dicular to m over the straight line embedded
planar graph z — t. The sweep line status is a
sorted list of the edges intersecting the sweep
line. The sweep line initially passes through
S and intersects both z = 0 and z = G. The
sweep line stops at all vertices of the z—t graph,
i.e. corners of the obstacles and endpoints of
the downward vertical line segments added in
step 1.

A vertex v is feasible if the edge imme-
diately to the left of v intersecting the sweep
line, is the line z = 0 or the vertex v has been
marked feasible by a previous vertex.

At each vertex v maintain the sweep line sta-
tus. If v is a feasible vertex,

(a) All the upper end points (vertices) of
vertical segments intersecting the sweep line
between v and the obstacle edge intersecting
the sweep line just to the right of v are marked
feasible. The vertical line segments are deleted.

(b) If the sweep line intersects an obstacle
edge e immediately to the right of v at a point
P , all upper end points of vertical line seg-
ments which terminate on e above the point
p are marked feasible and the end point of e
above p is also marked feasible. The vertical
line segments are deleted. Note that the slope
of obstacle edge e should be positive and less
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than L otherwise motion along e is not pos-
sible and hence no points are marked feasible.
If the edge e is the line z = G stop the sweep

and retrace the path of Z.

Complexity

The plane sweep technique takes O(log n) time
at each vertex. Since a vertical segment is
deleted whenever a vertex is marked feasible
through it, a vertex can be marked feasible
only once through a vertical line segment. The
total complexity of the algorithm is therefore
O(nlogn). In order to retrace a path, when-
ever a vertex is marked feasible, remember the
path to the vertex that marked it feastble.
From the retraced path a speed profile for the
robot can be easily calculated.

Constant Acceleration

In this section, we consider the case of constant
acceleration. The same algorithm presented for
the velocity case is used here but the proof
of correctness is different. As before, we per-
form the transformation to the z — ¢ frame. In
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the case of constant velocity, the obstacle edges
were mapped on to straight line segments, how-
ever in this case, the obstacle edges will be
mapped on to parabolic segments of the form
z = at? + Bt +v. We need to introduce a few
new points as follows,

1. Points on parabolic curves where the slope
of the curve is equal to m = 1/vy,,, or 0.
This is because the parts of the curve that
have slope < m or negative are forbidden
for the robot.

2. Consider the initial planar frame of refer-
ence. If an obstacle intersects the SG line
during its motion, without fully crossing
it, at some stage the velocity of the ob-
stacle perpendicular to the SG line must
equal 0. ( This occurs when the obstacle
partially crosses the SG line and starts to
reverse its direction ). The points on the
edges of the obstacle that lie on the SG
line at the instant of time when the obsta-
cle reverses its direction ( The component
of velocity perpendicular to the SG line
equals 0 ) are added to the z — ¢ graph.

It can be seen that the number of new points
added are O(n).

Definition : A path is said to be an -
path if it is the union of piecewise linear or
parabolic line segments which do not intersect
the interior of any obstacle and are

1. either vertical or

1

VYmazx

2. have a slope = m = or
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3. part of an edge of an obstacle, in which
case they may be parabolic but at no point
is the slope of the curve < m = -1

Ymaz

The same algorithm presented for the con-
stant velocity case is used for the constant ac-
celeration case. We present a short proof here.
The following argument refers to the z — ¢t
frame, and a path is defined to be any sequence
of straight or curved line segments. Let 7 be a
path from z = § to £ = G that meets the line
T = G at the lowest possible point. 7 is a path
along which the robot Z can move, it has slope
greater than or equal to m at all points and it
does not intersect the interior of any obstacle.
We construct a path 7’ that has the following
properties

1. The path 7’ always lies below =.

2. There are no obstacles or obstacle edges
between 7’ and .

4 Constructing path X °
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The path 7’ is constructed as follows. Start
from the origin £ = S and always move along
a line of slope = m or along an obstacle edge
if an obstacle is encountered. If at any stage,
there lies an obstacle between 7= and #’, con-
sider the first such obstacle vertex encountered.
We move vertically, on the vertical line segment
dropped from this vertex during the horizontal
sweep, till the vertex is reached. This ensures
that whenever a vertex is encountered between
7 and 7', we move upwards to the vertex such
that 7’ passes through it and hence it will not
lie between 7 and n’. Note that when we are
moving along a curved path, if we reach a ver-




tex where the slope of the curve = m, we pro-
ceed on a straight line segment with slope = m.
This is to ensure that the robot does not move
along a curved section of slope < m. It can
be easily seen that path 7' always lies below
path 7. Since path 7’ exists and is a B — path,
the algorithm will eventually find path #’. The
path 7' intersects the line z = G at a point
lower than (or at the same point as) the path 7.
Since 7 intersects ¢ = G at the lowest possible
point, so does ’. Therefore, the path 7/ found
by the algorithm will take the least amount of
time to reach z = G from z = S. The path =’
gives the required speed profile for Z.
Theorem : The Euclidean Shortest dis-
tance path amidst obstacles moving with con-
stant acceleration can be found in O(nlogn)
time. The path is given as a speed profile of
the robot Z along the straight line segment SG
joining the start point and the destination.

Conclusion

In this paper we have presented an algorithm
for determining the shortest path between two
points, in a time minimal manner. The en-
vironment is two dimensional and the obsta-
cles move with constant acceleration. The al-
gorithm assumes that the obstacles do not col-
lide and there are no stationary obstacles. In
the case where Z can move with negative ve-
locity ( backwards ) a path taking less time
than obtained by the above algorithm may be
found. In this case the path obtained will be
more time-optimal than the path obtained by
our algorithm.
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