Approximating shortest paths in arrangements of lines

Prosenjit Bose William Evans David Kirkpatrick
Michael McAllister Jack Snoeyink

Department of Computer Science
University of British Columbia

1 Introduction

Arrangements, such as the decomposition of the plane into regions by a set of n lines, are central
to much of the research on algorithms in computational geometry. They express a large number
of geometric features that have a highly regular structure, such as the (3) intersections between
pairs of lines. Powerful techniques, such as e-nets, random sampling, lower envelopes, and implicit
representation, have been developed that use the regularity to look at less than the full structure of
the arrangements in solving problems on arrangements [3, 4]. These techniques are most applicable
to problems of a combinatorial nature; they have less to say about metric properties.

In this paper, we consider shortest paths on an arrangement: Given a set L of n lines in the
plane, and two points s and ¢ that lie on lines of L, find a shortest path from s to ¢ that is restricted
to remain on the lines of L. We use the Euclidean distance metric.

One approach to solve this problem is to compute the entire arrangement .A and then compute a
shortest path by Dijkstra’s algorithm [2]. This ignores the regularity in the arrangement, however,
and leads to an algorithm with O(n?logn) complexity. The more interesting question is how to
compute a shortest path in subquadratic time; this has been posed, for example, by Marc van
Kreveld at the Fourth Dagstuhl Seminar on Computational Geometry [1].

Computing the shortest path without computing the arrangement seems difficult. In particular,
we have not succeeded in answering van Kreveld’s question. Neither have we succeeded in proving
an w(n log n) lower bound for a non-trivial model. However, we show how to compute, in O(n log n)
time, a path P from s to ¢t such that the length of P is at most twice that of the actual shortest
path. Our algorithm is simple: run Dijkstra’s in a subgraph of the arrangement. The proof of the
approximation bound makes extensive use of the structure of shortest paths on arrangements and
sub-arrangements formed by lines of restricted slope.

2 Algorithm

We begin with a few definitions that help us specify the subgraph of the arrangement and then

present the algorithm itself.
Let A be an arrangement of n lines and let s and ¢ be points on lines of .A. Throughout this '
paper, we use Roman letters to denote points and Greek letters to denote lines.

143

Definition 1 The lines of A that intersect the closed segment st are called the cross lines of A
relative to s and t (figure 1b).

Figure 1: (a) An arrangement of lines with cell Cell(st) in bold, (b) cross
lines with critical lines A* and A~, and (c) the graph G.

Definition 2 The extreme lines A\~ and At of A for s andt are cross lines with the largest negative
slope and smallest positive slope respectively. If there is no cross line of negative slope then A\~ is a
cross line with mazimum positive slope. Similarly, if there is no cross line of positive slope then At
is a cross line with smallest negative slope.

Definition 3 The cell of s and ¢ in A, Cell(st), is the boundary of the convez face that contains st
" in the following arrangement: the arrangement A without the cross lines and including all lines that
contain s or t. A cell edge is an edge of the arrangement A that lies on the boundary of Cell(st).
A cell vertex is an endpoint of a cell edge; it is an upper cell vertex if it is above the line st and is
a lower cell vertex if it is below the line st; vertices s and t are both upper and lower cell vertices.
A cell line is a line of A that contains a cell edge.

We now describe our approximation algorithm. Let G be the graph whose vertices are the cell
vertices of Cell(st) and the intersection point of AT and A~. Two vertices are joined by an edge if
they lie on the same input line and no cell vertex lies between them. The length of the edge is the
distance between its endpoints in the arrangefnent (figure 1c). The algorithm outputs the shortest
st-path in G. This path well-approximates the shortest st-path in the arrangement (see Section 3);
i.e. its length is at most twice that of the shortest st-path in the arrangement.

The algorithm runs in O(nlogn) time and uses linear space. It determines the cross lines in
O(n) time. It determines Cell(st) in O(nlogn) time by intersecting the halfplanes, defined by input
lines, that contain both s and ¢. It determines the cell vertices and the graph G by intersecting the
cross lines with Cell(st), also in O(nlogn) time. Finally, since the graph G has O(n) vertices and
edges, the algorithm finds the shortest st-path in G, using Dijkstra’s algorithm, in O(nlogn) time.

3 Approximation Guarantee

We require two bounds to prove that the path output by the algorithm well-approximates the
shortest st-path in the arrangement: a lower bound on the length of the shortest st-path in the

144

arrangement and an upper bound on the length of the path that we generate. These bounds appear
in Section 3.1. We then demonstrate how the bounds apply to the graph of the arrangement in
Section 3.2.

3.1 Path length bounds

We begin with a some simple properties of shortest paths and some definitions. The lower bound
and upper bound on path lengths appear in Lemmas 3 and 4.

Lemma 1 Let P be a shortest path from s to t and let a be any line. If P intersects a at two
points u and v then all points of P between u and v lie on a.

Proof: Let w be a point on P that lies between u and v. If w does not lie on « then
|zw| + |wo| < |wv| by the triangle inequality and we can find a shorter path than P from s
to t by following a, which contradicts the optimality of P. =

Corollary 2 The shortest path from s to t in an arrangement A is contained in Cell(st).

The analysis of the approximation factor for our short path focuses on the extreme lines A~
and AT, Intuitively, these lines provide the fastest traversal across the face of Cell(st).

Since Cell(st) is convex, it has two supporting tangents parallel to A~ and two supporting
tangents parallel to At (figure 2). These tangents divide Cell(st) into four contiguous chains of cell

vertices.

upper critical vertices
-~

-]

pre-critical
vertices , -~

post-critical
=« vertices
N

lower critical vertices

Figure 2: Division of Cell(st) into pre-critical vertices, critical vertices, and post-critical vertices.

Definition 4 The cell vertices of Cell(st) in the two chains that do not contain s ort, including
the vertices with the tangents parallel to A~ and A%, are critical vertices. The cell vertices in the
same chain as the point s are pre-critical vertices. The cell vertices in the same chain as t are

post-critical vertices.
Definition 5 An edge of Cell(st) is a critical edge if its two end vertices are critical vertices.

We will consider shortest paths that use a restricted set of lines from an arrangement. The
restrictions are made by looking at wedges:

145

Definition 6 Lety and 9 be distinct non-parallel lines, which divide the plane into four quadrants.
Let r be a point not on v or ¢». The wedge W (v, %,r) is the quadrant of the plane that contains
the point r. The intersection point y N1 is the apex of the wedge. A line o respects a wedge if the
line parallel to o through the apez of the wedge does not intersect the interior of the wedge.

The following pair of lemmas provide upper and lower bounds on the length of a shortest path
that respects a wedge.

Lemma 3 Let W = W(v,¢,r) be a wedge with apex p. Let P be the shortest path from r to p in an
arrangement of lines that respect the wedge W. Then the length of P is at least half the perimeter
of the parallelogram R with edges parallel to v and v and diagonal Pr.

Proof Sketch: Proceed by induction on the number of edges in the path. In the induction
step, a path either contains some vertex inside R, where we break the path and apply the
induction hypothesis to each half, or the path is completely outside R, where the result follows
immediately. =

Lemma 4 Let W = W(~,%,r) be a wedge with apez p. If o is any
line through r, then the length of the shortest path from r to p in the
arrangement formed by lines a, v, and ¥ is at most the perimeter of
the parallelogram with edges parallel to v and 1 and diagonal Tp.

Proof Sketch: Begin with the wedge W and parallelogram pa;ra;
as in figure 3. Define points b; and b, on lines v and % such that

la1b1| = |a2b2| = /|pai||paz|. By similar triangles, points by, r,

and by are collinear. Algebra shows that the paths rb;p and rbyp Figure 3: The wedge and

parallelogram layout for

have total length at most the perimeter of parallelogram pa;ra,. Lemima4

Since the line « intersects either pb;, or pb,, the result follows. =

The shortest path connecting a wedge point to its wedge apex using lines that respect the wedge
can always be well-approximated by a path in a subarrangement of constant size. This observation,
summarized in the corollary below, forms the building block for the proof of our approximation
algorithm.

Corollary 5 Using the notation of Lemmas 3 and 4, in any arrangement of lines containing a,
v, and ¥, if the shortest path from r to p uses only edges that respect W then this path is well-
approzimated by the shortest path from r to p in the arrangement consisting only of , v, and .

3.2 Approximation in the Arrangement Graph

To prove that Dijkstra’s algorithm extracts a well-approximating st-path, we show that every
shortest st-path in the arrangement either contains no critical vertices or at least one critical
vertex that satisfies some special conditions (Lemma 7). In the former case, a simple path in the
arrangement graph well-approximates the shortest path (Lemma 6). In the latter case, a more
complex approximate path is found (Lemma 8).

146

Lemma 6 If P is a shortest path from s to t which does not contain a critical vertez then the
shortest path from s to t on the arrangement of A*, A~, and Cell(st) well-approzimates P.

Proof: We prove the approximation factor for the the arrangement of AT, A~, and the lines
that contain s and t. The path that uses Cell(st) can only be shorter.

Let ¢ be the point At N A~, let W, = W(AT,A™,s) and let W, = W(A*,A7,t). Note that
since AT and A~ both separate s and t, the wedges W and W, are opposite quadrants and
hence, any line that respects one respects the other.

It follows from Lemma 3 that a shortest path P from s to ¢ that visits no critical vertex
(and hence all its edges respect both W, and W;) can be assumed to lie entirely within W, UW;
(and hence P must pass through c¢). Thus by Lemma 4, P can be well-approximated by the
concatenation of the paths that well-approximate the subpath of P from s to c and the subpath
of P from c to t.

Since the arrangement graph G contains the point A* N A~ as a vertex and it is connected
to Cell(st), the well-approximating path exists in G for Dijkstra’s algorithm to find. =

. At
Lemma 7 Let P be a shortest path from s to t. FEither P con-
upper critical vertices

tains no critical vertices or P contains at least one critical ver- y/_
ter between the last pre-critical vertez a and the first post-critical
verter b in P.

-

Proof: Assume that there is a shortest path P that contra-
dicts the theorem; this implies that the subpath of P from s
to a contains a critical vertex, the subpath from b to ¢ con-
tains a critical vertex, or they both contain critical vertices.
We may assume without loss of generality that the subpath
from b to t contains a critical vertex (otherwise switch the Fjgure 4: Illustration of the
roles of s and t). Let z be the first critical vertex in P after b. analysis of the structural

We may also assume that b is a lower cell vertex. Thus, z is properties of a shortest path.
on the upper cell (otherwise P would backtrack on the lower
cell). :
Since A* is a cross line, it separates s and t. Post-critical vertex b lies on the same side of
At as t. Once the path P crosses AT from s to b, it does not re-cross A*. Thus, the vertex z
that follows b in P is on the same side of A* as b and t.

Since At separates s from z and At does not intersect the upper pre-critical region, At
intersects the upper critical region at a vertex y that precedes z in the upper cell ordering.
Let z be the vertex where the path P and the line A™ first intersect.

If the path P does not visit a lower critical vertex between z and z then we can shorten P
by following AT from z to y and and then following cell edges from y to z (see figure 4).

Therefore, the path P must visit a lower critical vertex u between z and 2. The path P
cannot visit an upper pre-critical vertex after u because they are all on the other side of At
from » and t. It cannot visit a lower pre-critical vertex after u (otherwise P would backtrack

lower critical vertices

on the lower cell). m

147

Lemma 8 shows that the critical vertex of Lemma 7 is well-approximated. Theorem 9 then
provides the final guarantee on the length of the approximate shortest path.

Lemma 8 Let P be any shortest path from s to t. Each cell vertez in P up to (but not including)
the first post-critical vertez is well-approzimated.

Proof Sketch: The proof is by induction on a <-order of the cell vertices. The ordering is
somewhat involved and has been omitted for space from this abstract.

Let z be a cell vertex that occurs before the first post-critical vertex in P. If z is adjacent to
cell vertex y by a cell edge or to cell vertex z by a cross edge in P then, by induction, z and y
are well-approximated. Thus z is well-approximated.

Otherwise, consider the edges in P that precede z. We claim that these edges respect the
wedge W, = W (*gz, %7, s). If they don not then there is a last edge ab in P that does not
respect W,.

We show that the vertex b lies on the cross edge 7z of W. Since'ab must separate s from z
and ¢, and z is not a post-critical vertex, the line?respects the wedge W,. »

Theorem 9 The algorithm outputs a path that well-approzimates any shortest path P on the ar-
rangement from s to t.

Proof: By Lemma 7, P either contains no critical vertex or visits a critical vertex after the last
pre-critical vertex and before the first post-critical vertex. If P contains no critical vertex then
the path of Lemma 6 well-approximates P.

Otherwise, let z be a critical vertex after the last pre-critical vertex and before the first
post-critical vertex in P. Since z precedes the first post-critical vertex, z is well-approximated
from s by the algorithm (Lemma 8). Since z follows the last pre-critical vertex, z is also well-
approximated from ¢ (by a symmetric argument). Thus the path generated by the algorithm is
at most twice the length of P. =

Acknowledgments

We thank Giinter Rote and anonymous referees for their comments and improvements on an earlier
version of our results.

References

[1] H. Alt, B. Chazelle, and R. Seidel (editors). Computational geometry. Dagstuhl-Report; 109, 1995.

[2] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271,
1959. :

[3] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theo-
retical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.

[4] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice
Hall, Englewood Cliffs, NJ, 1993.)

148

