Viewing a Set of Spheres while Moving on a Linear Flightpath

Frank Follert *

April 22, 1996

Abstract

In this paper we investigate a hidden surface removal
problem with respect to a moving point of view. We
describe an algorithm which maintains the visibil-
ity graph of a set of n nonintersecting spheres in
3-space, while the viewpoint moves along a given
linear flightpath. To this end, the algorithm com-
putes the initial visibility graph of the spheres and
determines all points in time at which the topology
of the visibility graph changes as well as the cor-
responding topology changes. The algorithm runs
in time O(n3+¢ + (coper + tcir)logn), Where cope,
denotes the number of pairs of spheres, which have
intersecting projections during the entire motion,
and tc;r denotes the number of transparent topol-
ogy changes, i.e., the number of topology changes
under the assumption that all spheres are transpar-
ent. (Throughout the paper, € is an arbitrarily small
positive constant.)

1 Introduction

In this paper we investigate a three-dimensional hid-
den surface removal problem with respect to a mov-
ing point of view. Consider a situation where you
want to compute the perspective view of a set of fixed
nonintersecting spheres in 3-space from a sequence of
viewpoints lying on a linear flightpath. Such a situa-
tion arises for example in molecular graphics. Here,
a molecule is often modeled as the union of atoms,
each represented by a sphere of its van der Waals
radius. The possibility of viewing such molecules
from a prespecified linear flightpath in 3-space can

*Universitdt des Saarlandes, Fachbereich 14, Informatik,
Lehrstuhl Prof. G. Hotz, Postfach 151150, 66041 Saarbriicken,
Germany. Email: follert@cs.uni-sb.de, Fax: +49 681 302
4421. The author is supported by a Graduiertenkolleg fellow-
ship from DFG, Germany

provide valuable insights into their spatial structure.
Instead of computing the images from scratch for
each viewpoint along the trajectory, we can exploit
the fact that the visibility map of the spheres, i.e.,
the partition of the viewing plane into maximally
connected regions in which only one or no sphere
is visible, undergoes only minor changes when we
move from one viewpoint to the next. We thus can
compute the visibility map at the beginning of the
motion and update it as we move along the trajec-
tory. For this purpose, it is necessary to precom-
pute a list of critical points on the flightpath. This
list contains (a superset of) all the points where the
topology of the visibility map changes, along with
the topological changes occuring at these points. We
describe an algorithm for this problem with run-
ning time O(n3*¢ + (coper + tcir)logn), where n
denotes the number of spheres, tc;r is the number
of transparent topology changes (i.e., the number of
topology changes along the path assuming transpar-
ent spheres), and coper denotes the number of pairs
of spheres which have intersecting projections dur-
ing the entire motion. Note that cop., is trivially
bounded by O(n?) and tc;, is bounded by O(n®). A
major open problem is to develop algorithms with a
running time which is senstive to the number tcop of
opaque topology changes, i.e., topology changes which
occur in the visibility map assuming opaque spheres.
The paper is organized as follows: In section 2 we dis-
cuss some related work, section 3 contains a formal
description of the problem and some basic proper-
ties, in section 4 we present the algorithm in detail
and section 5 concludes with some remarks and open
problems.

2 Related Work

The study of hidden surface removal problems with
a moving point of view has been initiated in the pa-

137

per [2]. The authors investigate the situation of a
viewpoint moving on a linear flightpath through a
polygonal scene. They present algorithms with run-
ning times O((n%+tc:,) logn), O(n?+tc;, logn) and
O(n%logn + tesr) respectively, where te; denotes
the number of transparent topology changes. For
linear flightpaths through terrains, they obtain an
O((n + tcop)A3(n)logn)) algorithm, tc,, being the
number of opaque topology changes. In the case
of a vertical flightpath in a terrain, they give an
O(nX4(n)logn) algorithm, which matches an earlier
result of Cole and Sharir [3]. (As(n) denotes the
slightly superlinear length of a Davenport-Schinzel
sequence of order 4). Mulmuley [7] introduces the
concept of semi-opaque topology changes and de-
scribes an O(tcsqp logn + n2a(n)logn) algorithm
for a linear flightpath in a polygonal scene, where
tcsop denotes the number of semi-opaque topology
changes. Lenhof and Smid [6] consider scenes of
nonintersecting spheres for the first time. Their al-
gorithm, which computes parallel views from a view-
point moving on a circle at infinity takes O((n+tcir+
COper) logn) time. Based on this approach, we show
how to solve the related (but apparently more com-
plicated) problem of a viewpoint moving on a linear
flightpath amidst nonintersecting spheres efficiently.

3 The Problem

We will now give a more formal description of the
problem under consideration. Let B denote a set of
n nonintersecting spheres by,...,b, in 3-space, the
scene. Each sphere b;(z;,7;) is specified by its cen-
ter z; and radius r;. We assume that the viewpoint
moves monotonically on an oriented line segment f in
3-space, which does not intersect any of the spheres
in B. We transform the scene in time O(n) such that
the flightpath f coincides with the intervall [0,1] on
the z-axis of the coordinate frame. The points on
f are canonically represented by a monotonically in-
creasing time parameter ¢ € [0,1], such that f(0)
corresponds to the origin and f(1) to the other end-
point of f. The point on f with parameter value ¢
is denoted by f(t). At time ¢, we imagine project-
ing the scene B from f(t) onto a sphere S(t) which
is centered at f(z) and encloses the whole scene B
at any time. At time ¢, the sphere b; projects to a
disc d;(t) with boundary circle c;(t) on the sphere

S(t). The collection of circles C; = U;e;(t) induces
a graph Gj,the transparent visibility graph, on S(t):
its vertices correspond to the points of intersection
of the circles in C;, and its edges correspond to the
arcs connecting these intersections. We call a point
visible from f(t), if the line segment connecting the
point with f(t) does not intersect any sphere in B.
If we delete all those vertices and edges from G;
which are induced by scene points that are not visi-
ble from f(t), we obtain a subgraph of G;. We label
the faces of this subgraph with the spheres visible in
it and name the resulting labeled graph the visibil-
ity map V; of B at time t. A transparent (opaque)
topology change occurs at time ¢ iff the graphs G;:_s
(Vi=s) and Giys (Vi4s) are nonisomorphic for each
small 6 > 0. Our goal is to compute the initial
transparent visibility graph Go and an ordered list
of all critical points in time ¢ at which transpar-
ent topology changes occur, together with a (con-
stant length) description of these changes. Since the
transparent topology changes are a superset of the
opaque changes, this enables us to compute the maps
V;,0 <t < 1, as we move along f. Following a lemma
of [6], there are three types of transparent topology
changes to be detected: At time ¢, either two circles
¢i(t) and c;(t) touch in one point (type I) or become -
identical (type II), or three circles ¢;(t), ¢;(t), ce(t)
have a common point of intersection (type III).

4 The Algorithm

4.1 Overview

The structure of the algorithm crucially depends
on the notion of conflicting spheres. Therefore, we
first give a formal definition of this relation. We
say that two spheres b;,b; € B are in conflict at
time t € [0, 1], iff their projected images, the discs
di(t),d;(t) C S(t) have a nonempty intersection.
(Note that two spheres are in conflict if one disc con-
tains the other). Two spheres have a conflict, iff
there is a time t € [0,1] at which they are in con-
flict; they have a permanent conflict, iff they are in
conflict for all ¢ € [0, 1].

The algorithm which computes all transparent topol-
ogy changes which arise during the motion along
f proceeds in three phases. In the first phase, it
computes the initial visibility graph Go along with
the information which pairs of spheres are in con-

138

flict at ¢t = 0. This certainly includes those pairs of
spheres, which have a permanent conflict during the
entire motion; let cope, denote the number of such
pairs. This phase can be implemented by extending
the plane-sweep hidden line removal algorithm of [8].
The running time of this phase is bounded by O((n+
COper + teir) log n). Next, we determine all pairs of
spheres having a conflict, which have not been de-
tected in the first phase. This is done by employing
recent results on range searching with semialgebraic
sets. Phase two takes O(n%*" + tcir) time. With
this information, phase three of the algorithm can
compute the transparent topology changes of types
I and II in time O(fcir + COper). Subsequently, the
algorithm detects the transparent topology changes
of type III by a series of sweep procedures. This can
be done in time O((tcsr + coper) logn). Finally, sort-
ing the transparent topology changes by increasing
t takes time O(tcsr logn). Summing up, this yields
the main theorem.

Theorem 1 Let B be a sel of n nonintersecting
spheres in 3-space, let f be an oriented line seg-
ment in 3-space. The sorted sequence of transpar-
ent topology changes occuring in the graph G: as the
viewpoint moves along f can be computed in time
O(n3¥+€ 4 (teiy + coper) logn), where tey, is the num-
ber of transparent topology changes and coper denotes
the number of permanent conflicts.

We now describe the phases of the algorithm in
greater detail.

4.2 Phase 1

In the first phase, the algorithm computes the initial
transparent visibility graph G of the scene. This is
done by separately computing the visibility graphs
seen through each of the six faces of an axis-parallel
cube centered at the origin, glueing these parts to-
gether and projecting the resulting graph on the
sphere S(0). It is well known [4], that computing
the view of the scene B from the origin through one
of these six windows can be reduced to computing
the view from above of a set of horizontal discs by a
perspective transformation. In order to obtain this
parallel view, we use Nurmi’s sweepline hidden line
elimination procedure for polygonal scenes [8], which
can easily be modified to handle circular arcs. Fur-
thermore, the sweep procedure can be extended to
report all pairs of spheres conflicting at time ¢t = 0:

If the projected circles of two conflicting spheres in-
tersect, this intersection is found during the sweep.
The case of one circle containing the other can be
detected by making use of a special data structure
maintained by the algorithm, the node-lists. This
data structure can report quickly which circles cover
the intervall between two adjacent intersections on
the sweepline. Thus, whenever the sweepline touches
a new circle, the circles containing it can be easily
identified. The time consumed by the sweep proce-
dure is O((n+coper +k) log n), where k is the number
of circle-circle intersections found by the algorithm.
Since k = O(coper + tcir), the running time is domi-
nated by O((n + coper + teer) log n).

4.3 Phase 2

The goal of phase two is to quickly enumerate those
pairs of spheres which have a conflict. A naive ap-
proach to this problem is to simply check all pairs
in time O(n?). Since the number of conflicts can be
as large as O(n?), we cannot hope to find an algo-
rithm with a better worst-case performance. Instead,
we would like to obtain a time bound which is sub-
quadratic in n and which depends on the number of
conflicting pairs in an output-sensitive manner. This
was stated as an open problem in [5]. We now show
how this goal can be achieved by reducing the prob-
lem to range searching with semialgebraic sets.

The basic idea is to preprocess the set of spheres into
a data structure which when queried with a sphere b;
reports the spheres in (nonpermanent) conflict with
b; quickly. To accomplish this, we employ a theorem
from [1] concerning range searching with semialge-
braic sets.

Theorem 2 (Agarwal, Matousek)
Let f(zi,...,24,01,...,ap) be a (d+p)-variate poly-
nomial. Assume that p,d, g, deg(f) are bounded by a
constant. Let

I={{z e R?| f(z,a’) > 0,..., f(z,a?) > 0}

|al,...,a? € RP}.

Then the T'-range searching problem can be solved
with O(n) space, O(nlogn) preprocessing time, and
O(n~1/%*¢) query time, where the parameter b sai-
isfiesb=d ford <3 and b < 2d— 3 for d > 3.

A close inspection of the data structure shows that
reporting the points in the query range takes addi-
tional time linear in the size of the answer set. The

139

theorem can also be extended to handle range search-
ing with a constant number of conjunctions and dis-
junctions of (strict or nonstrict) inequalities involv-
ing a constant number of fixed bounded degree poly-
nomials, i.e., general semialgebraic sets of constant
description complexity. Note that the query time
still depends only on the dimension d of the point
set in this case.

In order to apply this result, we represent the set
B of spheres as a point set in R* with coordinates
(zi,7;) Vi. Now, we have to express the query with
a sphere b; as a query with a semialgebraic set (de-
pending only on the parameters (z;,r;) of b;) which
contains exactly those points representing spheres in
conflict with b;.

We start with some basic definitions. Given a point
p € R® and a direction vector v, we denote the ray
emanating from p with direction v by rp ,. We define
the set R(b;,b;) to be the set of points in 3-space,
for which b;, b; are in conflict, when viewed from that
point.

R(bi,b;)={peR® | e R :1p, Nb; #0
ATpy ﬂbj'f‘@}

The following lemma relates R(b;, b;) to some sim-
ply shaped point sets defined by two nonintersecting
spheres b;(z;,r;) and bj(z;,r;): Let l;; be the line
containing z;,z; and pl be an arbitrary plane con-
taining z;,z;. pl intersects the spheres b;,b; in two
circles k;, kj. Let t1,t2 be the inner tangents to k;, k;
in pl, i.e., those tangents which cross on the line /;;.
Let cone;; be the double cone in R obtained by
rotating the double wedge enclosed by t;,%2 which
contains k;, k; around l;;. The surface conesur fij
of this cone touches the spheres b;,b; in two circles
cir;, cir; which lie in two parallel planes pl;, pl;. The
layer between these two planes is called layer;;.

Lemma 1 Let bi(z;,7;),bj(zj,rj) be two spheres
with b; Nb; = 0. Then

R(bs, bj) = cone;j — layer;; Ub; Ub;

Proof: A ray emanating from a point p outside
cone;; can only intersect one of the two halfcones
of cone;; or its apex and thus can’t intersect both
spheres b; and bj. Thus R(b;,b;) C cone;j. Now
consider a point p inside cone;; but not contained
in layer;;. A ray starting at p and passing through
the apex of cone;; clearly intersects both spheres.
Through each point p in cone;;, which is contained

Figure 1: The intersection of R(b;, b;) with plane pl.

in layer;; but in neither of the two spheres, there is a
plane separating b; and b;. Hence, those points can’t
be starting points of rays piercing both spheres. Fi-
nally, both b; and b; obviously belong to R(b;,b;). O

The following observation is crucial: Two spheres
are in conflict, iff R(b;, b;) and the flightpath f have
a nonempty intersection. Since permanent conflicts
(f € R) are already detected in phase one, we can
restrict our attention to nonpermanent conflicts. A
nonpermanent conflict occurs iff dR(b;,b;) N f # 0.
Since f and b;,b; are disjoint, we can focus on in-
tersections of conesurf;; with f which are not con-
tained in layer;;. Remembering the initial trans-
formation of the scene (f being the intervall [0, 1]
on the z-axis), we have to test, whether an inter-
section of conesurf;; with the z-axis falls into the
intervall [0,1] and is not contained in layer;;. Since
conesur f;; is a quadratic surface in R?, its intersec-
tions with the z-axis can be described as the at most
two roots of a quadratic polynomial g(¢). The coeffi-
cients of g are low degree polynomials in the param-
eters z;,7;,z;,7; of b;,b;. Together with the addi-
tional constraints we obtain a system of (in)equalities

9(zi,ri,z5,m5,t) =0 A 0<t< 1
A (t, 0, 0) é Iayerij
A straightforward calculation shows that the last

140

constraint can be rewritten as
hi(zi, ri,zj, ;) <t - ha(zi, rs, 25,75)

\Y h3(:c.~, 75, Zj, Tj) <t- h4($,’, i, Tj, Tj)
where hi,ho, h3, hy are low degree polynomials in
Ti,T5,Z5,Tj.
In order to obtain a set of polynomial inequalities de-
pending only on the parameters z;, r;, zj,r; we have
to eliminate the time parameter ¢. For this purpose,
we solve the quadratic equation g(t) = 0 for ¢ and
substitute the resulting expressions t;(z;, 73, z;,7;)
and ta(z1, 74, 25, 7j) into the remaining inequalities.

dis(z;, i, 2j,75) > 0N

((0<t; <1A(hy-t3 <hsVhs-t; < hy))

V(0 <t2 < 1A(hy -t2 < haVhsz-t3 < h4)))

Here, dis(zi, ri, zj,r;) denotes the discriminant poly-
nomial of g(t). These inequalities can be trans-
formed into a set of polynomial inequalities by re-
peated squaring in order to eliminate square roots.
Of course, one has to distingish carefully between
different sign cases to maintain the equivalence of
the sets of inequalities. In [9], a somewhat similar
procedure is described in detail.
We finally end up with a set of a constant number
of polynomial inequalities expressing necessary and
sufficient conditions for two spheres to conflict in the
time intervall [0,1]. This is what we needed to apply
the above range searching result: All spheres conflict-
ing with a sphere b; lie in the semialgebraic set which
is defined by the above inequalities after substituting
variables for the parameters z;, ;. Hence, after pre-
processing the set of spheres in time O(n log n), these
spheres can be reported in time O(n§+‘ + COnp,i),
where copnp; denotes the number of spheres in non-
permanent conflict with b;. This is because the pa-
rameter b in theorem 2 is bounded by b < 2.-d—3 =5
in our case. Iterating this query for all spheres in B
increases the overall time by a linear factor. This
leads to the following

Lemma 2 After preprocessing the spheres in time
O(nlogn), all pairs of nonpermanently conflicting
spheres can be determined in time O(n3+¢ + copp),
where conp, denotes the number of nonpermanent
conflicts.

Since each nonpermanent conflict causes a transpar-
ent topology change, co,, is bounded by tc;-. Hence,
the running time of phase two can be rewritten as
O(n¥+¢ +tcy,).

4.4 Phase 3

In this phase we determine the set of all transparent
topology changes, based on the information gained
in the previous subsections. Topology changes of the
types I and II only occur for pairs of spheres which
are in conflict. Hence, we can simply run through
the list of pairs of conflicting spheres and check in
constant time per pair whether it causes a topology
change of type I or II.

We still need to determine the topology changes of
type III. For each sphere b; which has at least one
conflict we perform a "sweep” from ¢ = 0 to t =
1. The sweepline corresponds to the circle ¢;(t) on
S(t). It is implemented as a balanced binary tree
and stores the intersections of c;(t) with the ¢;(t),
where b; conflicts with b;, in clockwise order. The
initial status of the sweepline can be determined by
inspection of the initial transparent visibility graph
Go. The event schedule contains those points in time
t at which either

e a point of intersection appears on or disappears
from ¢;(t)

e two points of intersection become coincident

The event queue is initialized with the events of
the first type which can be determined by check-
ing all conflicting spheres in constant time per pair.
The sweep procedure works in a way reminiscent of
the Bentley-Ottmann algorithm. Whenever an event
point is reached, the sweep line is updated and the
upcoming points of coincidence of all now neighbor-
ing pairs of intersections are inserted into the queue.
Such coincidences correspond to topology changes of
type III and are output during the sweep whenever
they are reached. It is important to note that there
can be only a constant number of such common in-
tersections for each triple of spheres. To see this,
consider the set of planes p;(t),1 < ¢ < n uniquely
determined by p;(t) N S(t) = ¢;(t). For a given triple
b;, bj, by of spheres, a common intersection of the pro-
jected circles ¢;(t), c;(t), ck(t) at time ¢ occurs iff the
planes p;(t), p;j(t), px(t) have a common point of in-
tersection z which lies on S(t). The point of inter-
section z can be obtained by solving the system of
linear equations

A() -z = b(2)

141

induced by the plane equations of p;(t), p;(t), px(t)-
By Cramer’s rule, the coordinates of z are given by
o= det A; (t)
' det A(t)
where A;(t) denotes the matrix obtained by replacing
the i-th column of A(t) by b(t). The condition, that
z lies on the surface of the projection sphere S(t)
centered at f(t) with radius rs, can be expressed as

llz = f@II* =3
This is equivalent to

(det A1 (t) — t - det A(t))? + det? As(2)

+ det? A3(t) = r2 det® A(2)
This condition can be converted into a polynomial
of degree 32 in t, which necessarily vanishes when-
ever the condition is fulfilled. Thus, for each tripel of
spheres, we get a constant number of points in time,
at which a transparent topology change of type III
can occur. For a given sphere b;, the correspond-
ing sweep involving all co; spheres conflicting with it,
takes O((co; +tctr ;) log(co;+tctr i) time, where tcyr ;
is the number of transparent topology changes found
during the sweep. Summing up, we get an overall
running time of O((coper+tctr) log n) for phase three.
Finally, we sort all transparent topology changes,
which carry the information by which spheres they
are induced, by increasing t. This obviously takes
time O(te,, logte:,) which is O(teqr logn).

.1=1,2,3,

5 Conclusion

We gave an algorithm which maintains the visibil-
ity graph of a set of n nonintersecting spheres in
3-space while the viewpoint moves on a linear flight-
path. The algorithm runs in time O(n3+¢ + (coper +
tcir)logn), where cop., denotes the number of per-
manently conflicting pairs of spheres and tc;, is the
number of transparent topology changes. It uses re-
cent results on range searching with semialgebraic
sets to determine the number of conflicting pairs in
subquadratic time with regard to n. It seems possi-
ble to further improve the O(n3+¢) term in the time
bound by reducing the query time at the cost of addi-
tional space requirement, i.e., to obtain a time-space
trade-off. This is currently investigated. A major
open problem is to obtain an algorithm with a run-
ning time depending on the number of opaque and
not the transparent topology changes.

Acknowledgement

The author thanks Elmar Schomer for helpful dis-
cussons on this subject.

References

[1] P. K. Agarwal, J. Matousek. On range search-
ing with semialgebraic sets. Discrete Comput.
Geom. 11 (1994), pp. 393-418.

[2] M. Bern, D. Dobkin, D. Eppstein, and R. Gross-
mann. Visibility with a moving point of view.

Algorithmica, 11 (1994), pp. 360-378.

[3] R. Cole, M. Sharir. Visibility problems for poly-
hedral terrains. J. Symbolic Comput. 7 (1989),

pp. 11-30.

[4] M. Katz, M. Overmars, M. Sharir. Efficient hid-
den surface removal for objects with small union
size. Comput. Geometry: Theory and Appl. 2

(1992) pp. 223-234.

H.P. Lenhof. Distanz- und Suchprobleme in der
algorithmischen Geometrie und Anwendungen
in der Bioinformatik. Ph.D. Thesis, University
of Saarland (1993).

[5]

H.P. Lenhof, M. Smid. Maintaining the visibility
map of spheres while moving the viewpoint on
a circle at infinity. Algortihmica, 13 (1995), pp.
301-312.

K. Mulmuley. Hidden surface removal with re-
spect to a moving point of view. Proc. 23rd
ACM Symp. on Theory of Computing (1991),
pp. 512-522.

(7]

[8] O. Nurmi. A fast line-sweep algorithm for hid-
den line elimination. BIT, 25 (1985), pp. 466-
472.

[9] E. Schémer, Ch. Thiel. Efficint collision detec-
tion for moving polyhedra. Proc. 11th ACM
Symp. Comp. Geom. (1995), pp. 51-60.

142

