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Abstract

We present an algorithm that deforms a given set of
polygonal lines (polylines) defined on a set of 2n ver-
tices into the new set of polylines that results from
one of the vertices moving along a straight line to a
new point in the plane, creating bends in the poly-
lines intersected by the line of motion. The algorithm
has applications in robotics, where the moving point
is one of n robots in the plane and the polylines are
representations of taut tethers attached to the robots.
The algorithm runs in O(kn?) time, where k is the
maximum number of line segments a polyline may
have. The algorithm makes use of work presented
in [8], which requires that a triangulation of the set
of polyline vertices be maintained. When the poly-
line vertices change, so must the triangulation. Also
presented here is a new triangulation algorithm and
data structure that allows for easy insertion and dele-
tion of triangle vertices. The data structure requires
O(n) space and allows vertices to be inserted in O(n)
time in the worst case and deleted in O(n?) time. The
expected time for insertion or deletion of a vertex is
O(logn).

1 Introduction

We consider the following problem. A set of 2n dis-
tinct points, S;,T;,7 = 1,...,n, in the plane is given.
The points S = {S;} lie on the boundary of a convex
polygon P with vertices V; the points T' = {T;} lie in
its interior. Each pair of points (S;,7;) is connected
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Figure 1: (a) A set of n = 4 nonintersecting poly-
lines is shown. Polyline PL, contains a repeated edge
(T2,Ts). The edges (T1,T3) and (T»,T4) are shared
between PL, and PL4 but these polylines do not in-
tersect since the set of curves corresponding to these
polylines, shown in (b), do not intersect. In (b), the
points Ty, ...Ty have been replaced by small circular
objects around which the curves bend.

by a polygonal line (polyline, for short) PL; that be-
gins at S; (the initial verter) and ends at T; (the final
vertez). In addition, each polyline may have any num-
ber of internal vertices. These vertices are members of
the set T and are not necessarily distinct (z.e., a single
vertex may be repeated any number of times, although
not in sequence) (Figure 1(a)). Each polyline PL; may
be seen as a discrete representation of a continuous,
taut curve C; in the plane that bends around small
circular objects located at the points T; (Figure 1(b)).
The polylines do not intersect (or self-intersect), by
which we mean that the continuous curves they rep-
resent do not intersect. Note that, by this definition,
intersecting as well as nonintersecting polylines may
share vertices and edges (Figure 1).

A particular arrangement of polylines is known as a
configuration. The problem considered here is to de-
termine how a configuration changes when one of the
points 7; moves along a straight line in the plane to
a new location 7. The new configuration that results




Figure 2: (a) If the circular object at T, moves along
the straight line segment (T2, T4) pushing the curves it
encounters, the configuration shown in (b) will result,
assuming the curves remain taut at all times.

corresponds to the set of taut curves that would result
from the circular object at 7; moving along a straight
line in the plane to T}, pulling with it the curve C;
ending at 7; and pushing the other curves it encoun-
ters out of its way (Figure 2).

This problem appears in robotics in the context of
motion planning for multiple tethered robots in the
plane [10, 11, 13], and has applications to commercial
systems such as RobotWorld [12]. The moving bodies
represent small, disc-like robots; the deforming curves
are their flexible cables. The cables provide resources
necessary for the robots to perform their tasks. When
planning the motion for these robots, the configura-
tions of their cables that result from the motion must
be taken into account. We assume the cables may be
pushed and bent by other robots that come in contact
with them but remain taut at all times. An algorithm
for determining a taut configuration of the cables given
the points S and T is presented in [5]. Algorithms for
planning the motion of a set of robots based on such
a configuration have also been developed [4, 6]. Pre-
sented here is an algorithm for determining the con-
figuration of the cables after a certain motion plan has
been executed.

The algorithm we present makes use of the work
of Leiserson and Maley [8] for routing wires in a pla-
nar VLSI design around certain features (points) in
the plane. They present an algorithm for producing
from a given set of curves in the plane a topologically
equivalent set of polylines (the rubberband equivalents
of the set of curves), the vertices of which are members
of a given set of points in the plane. For the given set
of curves, the rubberband equivalents are the shortest
set of topologically equivalent curves. The algorithms
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of [8] do not provide a way of altering the rubber-
band equivalents when one of the points in the plane
changes. Here we extend the work of Leiserson and
Maley to provide an efficient way of changing from
one rubberband equivalent to another when the set of
potential vertices changes.

To create the rubberband equivalents for a given
set of curves, a triangulation of the given set of poten-
tial vertices is necessary. For the algorithm presented
here, the set of potential vertices changes. Thus, a
dynamic triangulation method, that allows vertices to
be added and deleted easily without a complete re-
triangulation, is necessary. Though there are several
partially dynamic triangulations, that allow for easy
insertion of a new vertex but not deletion (e.g, [3, 7]),
only two other fully dynamic triangulation algorithms
have been presented in the literature, each of which
is designed to maintain a Delaunay triangulation on
a set of points [1, 9]. To compute the rubberband
equivalents, any triangulation of the potential vertices
will suffice; in particular, the triangulation need not
be Delaunay. We present here a new, fully dynamic
method for maintaining a non-Delaunay triangulation.
By removing the constraint that the triangulation be
Delaunay, we are able to construct a dynamic triangu-
lation method that is arguably simpler than the De-
launay methods. This triangulation method also pro-
vides a simple way to maintain the data structure that
represents the polylines and their relationship to the
changing triangulation.

The dynamic Delaunay triangulation method of
Palacios-Velez and Cuevas-Renaud [9] uses an O(n)
size data structure for a triangulation with O(n) ver-
tices that supports O(n) vertex insertion and dele-
tion procedures. Our data structure, the Triangula-
tion Tree, also requires O(n) space. Insertion of a new
vertex using the Triangulation Tree can be done in
O(n) time and deletion in O(n?). Devillers, Meiser,
and Teillaud [2] show that with their data structure,
the Delaunay Tree, the expected time for inserting or
deleting a vertex is O(logn). Using the framework
developed by Boissonnat, et al. for randomized anal-
ysis of geometric algorithms [1], we arrive at the same
expected time of O(logn) for insertions and deletions
using the Triangulation Tree.

The Triangulation Tree and polyline data structures
are described in Section 2 along with the procedures
for modifying them. Using these procedures, the algo-
rithm NewConfig for producing the new configura-
tion of polylines that results from the movement of the
point from T; to T} is presented and analyzed in Sec-




Figure 3: (a) The triangulation Az. (b) When T,
is added as a triangulation vertex, triangle VoV3T5 is
subdivided into three smaller triangles.

tion 3, followed by concluding remarks in Section 4.

2 Data Structures

2.1 The Triangulation Tree

The Triangulation Tree, first introduced in [6] as a
data structure that easily incorporates the insertion
of a new triangulation vertex, is modified here to al-
low for efficient deletions of vertices as well. Let T'r;
represent the Triangulation Tree associated with the
triangulation A; of the vertices {T1,...,T;}UV. The
tree T'r; is unbalanced and hierarchical, containing one
leaf node per triangle and one nonleaf node per vertex
T;. The root of the tree represents the polygon P. All
other nonleaf nodes of T'r; represent triangles of pre-
vious triangulations that have been subdivided due to
the insertion of one or more points.

The hierarchical structure of the tree is based on the
following observation: to create A;4; from A; when
the point T4, is added to the set of triangulation ver-
tices, one needs only find the triangle of A; containing
T;41 and subdivide it into three smaller triangles (Fig-
ure 3). If TN is the leaf node corresponding to the
triangle of A; containing Tj41, tree Triy; is created
from Tr; by adding three leaf nodes as children of
TN

For each node TN, which corresponds to a unique

1We assume here, for ease of explanation, that the point
Ti41 does not lie on an edge of A;. When this is not the case,
insertion of Ti41 causes two triangles to be divided into two
triangles each and, correspondingly, the addition of two children
to each of two nodes. The same theoretical results presented
here apply in this case but with minor modifications to the
algorithms.
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triangle 7 in either the current or a previous triangu-
lation, the following information is stored:

Parent — a pointer to its parent in the tree;

Vertices — the counterclockwise list of vertices of the
triangle 7 (for the root node, this is the list of
vertices of polygon P);

Point Num — the number i of the point 7; that subdi-
vides 7 (for leaf nodes, PointNum = NoPoint);

Children — an ordered list of children;

Neighbors — a pointer to the nodes representing the
neighbors of 7 across each of its edges (for the
root node, this list is empty).

The root of the tree has v = |V| children; all other
nonleaf nodes have three children. We use the nota-
tion FieldName(TN) (as in Parent(TN)) to indicate
the data associated with a particular node T'N.

The data for each node in the tree requires O(1)
space and there are O(|T'|) = O(n) nodes in the tree.
The Triangulation Tree is thus an O(n) data structure.

2.1.1 Adding a Triangulation Vertex

As discussed above, to add a new vertex to the trian-
gulation one needs only find the proper triangle in the
current triangulation to subdivide and add children to
the corresponding node in the Triangulation Tree.

To find the leaf node corresponding to the trian-
gle containing a given point, a walk from the root of
the tree down one branch is done by testing for inclu-
sion of the point in successively smaller triangles. In
the worst case, this requires O(n) time for a tree with
O(n) nodes, but, on average, it requires O(log n) time
[1]. All information about a child can be easily de-
termined from its parent’s information in O(1) time.
Thus, adding a new triangulation vertex requires at
most O(n) time and, on average, O(logn) time.

2.1.2 Deleting a Triangulation Vertex

To delete a vertex T; from the triangulation while
maintaining the hierarchical structure of the tree,
some nodes must be removed from the tree and then
reinserted. Let TN be the node in tree Tr with
PointNum(TN) = i and let 7 be the triangle TN
represents. Node TN and its descendants must then
be adjusted to reflect the deletion of 7;. The adjust-
ment can be done by reinserting all vertices contained

in 7. Note, however, that all nodes reinserted will




Figure 4: If vertex T3 Is deleted from the triangula-
tion shown in (a), Ty and Ts, the other two points
contained In triangle V,V3T, are candidates for rein-
sertion. When vertex Ty is reinserted (b), the triangle
V, VT4 is stable and vertex Ts need not be reinserted.

be descendants of T'N so it may be assumed to be
the root of the tree for the vertex insertion procedure.
Further note that some triangles (called stable trian-
gles) that were created by vertices contained in 7 will
not be affected by the deletion of T; (Figure 4); their
corresponding nodes (stable nodes) and descendants
may be simply copied to the appropriate positions in
the modified tree. Which triangles are stable depends
on the order of reinsertion of the vertices in 7. The
vertices are reinserted in the same order they were
initially inserted (i.e, from node TN down) to achieve
the most stability. ]

In the worst case there will be O(n) nodes to rein-
sert after the deletion of T}, which implies an O(n?)
worst-case running time for the vertex deletion proce-
dure. On average, however, only a constant number of
nodes nodes will have to be reinserted, which implies
an O(logn) expected running time for the procedure.

2.2 Polylines

Our algorithm for deforming one set of polylines into
another when one of the polyline vertices moves re-
quires that the relationship between the polylines and
the triangulation of the polyline vertices be main-
tained as the triangulation is updated to incorporate
the changed vertex. Section 2.2.1 describes the data
structure used to represent the polylines. To main-
tain this data structure, an additional data field is
also required for each node in the Triangulation Tree;
this is described in Section 2.2.2 along with the nec-
essary modifications to the vertex insertion and dele-
tion procedure. Procedures for changing the polylines
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by adding or removing segments are described in Sec-
tions 2.2.3 and 2.2.4.

2.2.1 The Line Segment Array

Each polyline PL; consists of a number of line seg-
ments in a certain order. Polyline PL; is considered
to be oriented from its initial to its final vertex; the
line segments that make up PL; are oriented accord-
ingly. The line segments are of the form (S;, T}) (j not
necessarily different from 2) or (Tj,Tk), 7 # k. Asso-
ciated with each polyline is a set of corridor vertices,
which, for a given triangulation, is the ordered list
of vertices of the triangles encountered when moving
from the initial to the final vertex of PL; together with
an indication of on which side of PL; each vertex lies
[8]. Note that, for the triangle containing the initial
vertex, there are two corridor vertices; for all other
triangles, there is one, which is the vertex not shared
by the previous triangle.

Though the polylines may be arbitrarily large with
any number of segments, the set of unique line seg-
ments present in any configuration of nonintersecting
polylines forms a planar graph on the points S and T'.
Therefore, there are O(|S| + |T'|) = O(n) distinct line
segments. The data for these line segments are stored
in the Line Segment Array, LS.

For each line segment L € LS, the following data
are stored:

Start, End — the endpoints of L;

TriList — the list of the Triangulation Tree nodes
corresponding to the triangles intersected by L,
ordered from Start(L) to End(L);

CV - the corridor vertices for L, ordered from

Start(L) to End(L);

DeformPLine — a temporary list of line segments
created for each line segment altered by the move-
ment of a polyline vertex.

The TriList for each segment L begins with a pointer
to the node corresponding to the triangle subdivided
by Start(L), if Start(L) = T; for some j, and ends
with the analogous node for End(L). When L is an
edge of the triangulation, these are the only two ele-
ments of TriList(L). For every node in TriList(L),
except the first and last, there is an entry in CV(L).

Each polyline is represented as a list of pointers to
the appropriate entries in LS together with an indica-
tion of the orientation of each segment. The corridor
vertices of each polyline can be easily determined from




the corridor vertices CV/(L) for each segment L of the
polyline and the initial and final nodes of T'riList(L).
The initial and final nodes of TriList(L) are used to
determine the corridor vertices contributed by every
internal vertex of a polyline that is also a triangulation
vertex.

The maximum size of TriList(L), for any segment
L is O(n) since the number of triangles generated
by O(n) vertices is O(n) and any segment may pass
through all but a constant number of triangles in a
given triangulation. Thus there may also be O(n) cor-
ridor vertices. DeformPLine(L) is a polyline of at
most four segments (Section 3). Thus the Line Seg-
ment Array requires O(n?) storage.

2.2.2 Triangulation Tree with Polylines

When vertices are added to or removed from the tri-
angulation, the list of corridor vertices and intersected
triangles must be updated for certain segments in LS.
To keep track of which segments are affected by such
changes, an additional data field is added to each node
TN in the Triangulation Tree:

SegList — an unordered list of pointers to segments
L € LS that intersect the triangle 7 that TN
represents, together with an indication of TN’s
location in TriList(L).

Since each triangle may be intersected by O(n) seg-
ments from LS, the addition of this data field makes
the Triangulation Tree an O(n?) data structure.

The procedures for inserting and deleting triangula-
tion vertices must also be changed to incorporate the
maintenance work on the polyline data structure that
is necessary for each change in the triangulation. The
worst-case complexity of these procedures is not af-
fected by these changes, but average-case complexity
for each is increased to O(n).

Though the addition of the SegList data field
causes an increase in the space required for the Tri-
angulation Tree and average-time complexity of its
procedures, this data field provides an easy and ef-
ficient way to update the list of corridor vertices for
each segment affected by a change in the triangula-
tion. Without this data field, it would be necessary
to consider each line segment’s list of corridor vertices
and tree nodes as a possible candidate for change for
every addition or deletion of a triangle vertex.

2.2.3 Inserting a Line Segment

When a line segment L is added to the Line Segment
Array, it is necessary to trace it through the current
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triangulation to determine its set of corridor vertices
CV/(L) and the corresponding tree nodes TriList(L).
The segment L may pass through O(n) triangles and
thus CV(L) and TriList(L) may be created in O(n)
time. Also, for each node T'N corresponding to a tri-
angle L intersects, SegList(T'N) must be updated.
Each update requires O(1) time and there may be
O(n) nodes to update. Thus inserting a new segment
in the Line Segment Array requires O(n) time in the
worst case.

2.2.4 Deleting a Line Segment

Deletion of a segment L from LS can be done by sim-
ply removing L from SegList(TN) for each TN €
TriList(L). This operation is bounded by the num-
ber of triangles through which a single segment may
pass, which is O(n).

3 The NewConfig Algorithm

Having described the data structures used by our al-
gorithm and the procedures for updating these data
structures, we are now prepared to describe the com-
plete algorithm, called NewConfig, that produces
the new configuration of polylines that results when a
polyline vertex moves to a new location in the plane
along a straight line. The input to the algorithm is
the initial set of polylines PL = {PL;}, the Trian-
gulation Tree T'r for the points T'U V, the index ¢
of the vertex T; that is moving, and the new loca-
tion T} of that vertex. Let M be the line segment
(Ti,T}). To produce the new configuration of poly-
lines PL’ that results from the motion of the point
along M, the point 7; is removed from the triangula-
tion and T is inserted. Then, for each line segment
L € LS that is intersected by M at a point p in its
interior, DeformP Line(L) is created as a polyline of
five vertices: Start(L),p,T,p, End(L). For each line
segment L with an endpoint on M, De formP Line(L)
is a polyline of two segments: L and M. From the set
of original and deformed line segments, the set of cor-
ridor vertices for each polyline affected by the move
along M can be easily determined.

The corridor vertices of each polyline are used as
input to algorithm W of [8] to produce the new set
of polylines PL’. Finally, the array LS is updated by
removing segments that are not part of the polylines
PL’ and adding any new segments.

The algorithm of [8] runs in time linear in the num-
ber of corridor vertices. If k is the maximum number




of segments in a polyline, the number of corridor ver-
tices is O(kn) for each polyline. It can be shown, based
on the previous analysis of the data structure proce-
dures, that the other steps of the algorithm require no
more than O(kn?) steps in total. Thus the algorithm
requires no more than O(kn?) time in the worst case.

4 Conclusion

We have presented an algorithm, NewConfig, for al-
tering a given set of nonintersecting polylines that
correspond to taut curves in the plane, to reflect the
changes brought about by one of the polyline vertices
moving along a straight line in the plane. We have also
presented the data structures used by the NewCon fig
algorithm, one of which supports a new dynamic tri-
angulation method. This triangulation method is
comparable in space complexity and worst-case and
average-case time complexity to existing fully dynamic
triangulation methods, but also supports easy mainte-
nance of the data structure that represents the poly-
lines.

The NewConfig algorithm has potential applica-
tions in any problem setting that involves curves bend-
ing around polygonal or circular objects in the plane,
such as in planar VLSI design and robotics. In partic-
ular, NewConfig has been used as a basis for a mo-
tion planning algorithm for a set of tethered robots in
the plane. The polylines represent the taut tethers of
the robots. When the path of each robot is a polyline
itself, the NewConfig algorithm may be used repeat-
edly for each segment of the path to produce the con-
figuration of cables that results when each robot has
moved to its final destination. The resulting configu-
ration may then be used to determine future motion
plans for the robots.
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