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Abstract

Proximity graphs play a fundamental role in pattern recognition, VLSI design, computer
graphics, morphology, and image processing, among others. Our contribution is to propose time-
optimal algorithms for constructing the Euclidian Minimum Spanning Tree and the Relative
Neighborhood Graph of an n-vertex unimodal polygon as well as the Symmetric Furthest Neigh-
bor Graph of n points in the plane. All our algorithm run on meshes enhanced with row and
column buses. We begin by establishing a Q(logn) time lower bound for the tasks of computing
the Euclidian Minimum Spanning Tree of an n-vertex unimodal polygon. as well as for the task
of computing the Symmetric Furthest Neighbor Graph of a set of n points in the plane. This
lower bound holds for both the CREW-PRAM and for meshes with multiple broadcasting. We
then show that this time lower bound is tight by exhibiting algorithms for these tasks running
in O(logn) time on a mesh with multiple broadcasting of size n x n. We further show that the
All Nearest Neighbors and the Relative Neighborhood Graph of an n-vertex unimodal polygon
can be computed in O(1) time on meshes with multiple broadcasting.

1 Introduction

Recently, an elegant and powerful architecture has been obtained by adding one bus to every row
and to every column in the mesh, as illustrated in Figure L. In [7] an abstraction of such a system
is referred 1o as mesh with multiple broadcasting. The mesh with multiple broadcasting has been
implemented in VLSI and is commercially available in the DAP family of multicomputers [7. 12]. In
turn, due to its commercial availability, the mesh with multiple broadcasting has attracted a great
deal of attention. Applications ranging from image processing [7. 12], to computer graphics and
robotics [3, 11], to computational geometry and pattern recognition [3, 7, 11], to other fundamental

problems [2, 4] have found efficient solutions on this platform and some of its variants. A mesh with

Figure 1: A mesh with mulliple broadcasting of sizc | X 5

multiple broadcasting of size n x n cousists of n identical SIMD processors positioned on a square
array. We assume that processors know their coordinates within the mesh and have a constant
number of registers of size O(logn). In unit time, each processor performs an arithmetic or boolcan
operation, communicates with one of its neighbors using a local connection, hroadcasts a value on
a bus or reads a value from a specified bus. We assume that communication along buses takes
constant time. Each of these operations involves handling at most O(logn) bits of information. For
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practical reasons, only one processor is allowed to broadcast on a given bus at any one time. By
contrast, all the processors on the bus can simultaneously read the value being broadcast.

A PRAM consists of SIMD processors, with unit-time access to a shared memory. In the CREW-
PRAM, a memory location can be simultaneously accessed in reading but not in writing. A mesh
with multiple broadcasting can be perceived as a restricted version of the CREW-PRAM: the buses
are nothing more than oblivious concurrent read, exclusive write registers with the access restricted
to certain sets of processors. Indeed, a square mesh with multiple broadcasting using p processors
can be viewed as a CREW-PRAM with p processors where groups of /p of these have concurrent
read access to a register whose value is available for one time unit, after which it is lost. Given
that the mesh with multiple broadcasting is. in this sense, wcaker than the CREW-PRAM, it is
very often quite a challenge to design algorithms in this model that match the performance of
their CREW-PRAM counterparts. Typically. for the same running time, the mesh with multiple
broadcasting uses more processors. This phenomenon will appear in our algorithms.

A classic problem in pattern recognition and classification is to compute for every point in
a given set S, a point that is closest to it: this problem is known as the All-Nearest Neighbor
problem (ANN, for short) and has been well studied in both sequential and parallel [6, 11, 13, 15].
Very recently, Olariu and Stojmenovi¢ [11] provided time-optimal algorithms for solving the ANN
problem for points in the plane on the mesh with multiple broadcasting. A class of related problems
involves associating a certain graph with the set S. This graph is, of course, application-specific.
For example, in pattern recognition one is interested in the Euclidian Minimum Spanning Tree
(EMST) of S, the Relative Neighborhood Graph (RNG) of 5, the Symmetric Furthest Neighbor
Graph (SFN) of S, the Gabriel Graph (GG) of §, and the Delaunay Graph (DG) of 5. to name
a few [13, 14, 15, 16]. In this context, our contribution is to provide time-optimal algorithms to
construct the ANN, EMST and RNG, of an n-vertex unimodal polygon as well as the SFN of a set
of n points in the plane.

We begin by establishing a Q(log n) time lower bound for both the task of computing the EMST
of an n-vertex unimodal polygon and for the task of computing the SFN graph of a set of n points
in the plane. This time lower bound holds for both the CREW-PRAM and for the mesh with
multiple broadcasting. Next, we show that the bound is tight by exhibiting algorithms solving these
problems in O(logn) time on a mesh with multiple broadcasting of size n x n.

2 Background and Terminology

A polygon P = pi.pa,...,pn is termed convex if all its diagonals lie entirely within P. Typically.
P is represented by a linked list stored in some order in an array P[l..n]. With the polygon P we
associate in a natural way the graph G(P) whose vertices are the vertices of P> and whose edges are
precisely the edges of P. It should be clear that the graph G(/?) can be constructed from P in O(1)
time. Since a number of different graphs will be considered in this paper. it is appropriate to clarify
how these graphs are specified. As customary, a graph (G will be specified by a linked list of edges
i.e. unordered pairs of vertices stored in some order in an array (. This representation facilitates
the assignment of processors to the edges of .

Call a real function f:{0.1,...,n—1} — R unimodal if there exists an integer ¢ (0 <7< n—1)
such that f is strictly increasing in the interval [0,¢] and strictly decreasing in the interval [z, n — 1].
A vertex p; of a polygon P is said to be unimodal if the Euclidian distance function d(p;,p;) is
unimodal. The polygon P itself is termed unimodal if all its vertices are unimodal. Traditionally.
convexity has played a central role in analyzing relevant features of the shape of a set of points
[6, 13]. Recently, Toussaiut [15] pointed out that the notions of convexity and unimodality are
quite different: convex polygons need not be unimodal, and unimodal polygons need not be convex.
Furthermore, in [15] it is argued that the key factor for obtaining very efficient algorithms for a
large number of problems in computational geometry is not convexity, but rather unimodality. It is
not surprising, therefore, that unimodality and multimodality have received considerable attention
in the literature [1, 9, 14, 15, 16].
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The Euclidian Minimum Spanning Tree (EMST) of a set .S of points in the plane is a minimum
spanning tree of the complete graph whose vertices are the points in .5 and whose edges are weighted
by the Euclidian distance between the corresponding points. The Rclative Neighborhood Graph
(RNG) of a set S of points in the plane has been introduced by Toussaint [15] in an effort to
capture many perceptually relevant features of the set $. Specifically, given a set .S of points
in the plane, RNG(S) has for vertices the points of 5 together with an edge between p and ¢ if
d(p,q) < maxzes{d(p.s).d(g.s)}. An equivalent definition states that two vertices p. ¢ are joined
by an edge in RNG(S) if no other points of S lie inside LUNE(p, ¢), the “June of influence” of p, ¢
defined as the intersection of two open disks each of radius d(p.q) centered at p, g respectively [14].

Given a set S a points in the plane, the points p and ¢ of 5 are a symmetric furthest pair if
both p and ¢ are furthest from each other among the points of S, i.e. all other points lie inside
LUN E(p.q). Put differently, d(p,q)= maxses{d(p,s)} and d(q.p)= maxses{d(g,s)}.

The Symmetric Furthest Neighbor Graph (SFN) associated with .5 has the points of .5 as vertices;
vertices p and ¢ are connected by an edge if and only if p and ¢ are a symmetric furthest pair [16].

The prefiz computation problem has turned out to one of the basic techniques in parallel pro-
cessing, being a key ingredient in many algorithms. Recently, Olariu et al. [9] have shown that
Proposition 2.1. The prefix sums (also maxima or minima) of a sequence of n real numbers stored
in one row of a mesh with multiple broadcasting of size n x n can be computed in O(log n) time.
Furthermore, this is time-optimal. O

The convex hull of a set of points in the plane is defined as the smallest convex set that contains
the original set [13]. Our arguments rely, in part, on the following result proved in [10].
Proposition 2.2. [10] The convex hull of planar set of n points stored in the first row of a mesh
with multiple broadcasting of size n X n can be computed in O(logn) time. Furthermore. this is
time-optimal. O

Vertices p; and p; of a convex polygon I’ are termed antipodal if P admits parallel supporting
lines through p; and p;. A classic theorem in combinatorial geometry [13] asserts that the diameter
of a convex polygon is the largest distance between antipodal pairs. Recently, the following result
was proved in [3].

Proposition 2.3. [3] Let P be an n-vertex convex polygon stored one vertex per processor in one
row of a mesh with multiple broadcasting of size n X n. Any semigroup computation involving the
antipodal pairs of P can be performed in O(logn) time. Furthermore, this is time-optimal. O

3 Lower Bounds

The purpose of this section is to derive lower bounds for the following problems.
EMST: given an n-vertex unimodal polygon compute its Euclidian Minimum Spauning Tree;
SFN: given a set S of points in the plane, compute its Symmetric Furthest N eighbor graph.

Our optimality arguments will be stated first in the CREW-PRAM. This approach is motivated
by a recent result of Lin et al. [8] that allows us to extend many lower bound results from the
CREW-PRAM to meshes with multiple broadcasting.

For further reference we now state a fundamental result of Cook et al. [5] asserting that the
time lower bound for the OR problem on the CREW-PRAM is Q(logn) regardless of the number
of processors used. We define the problem and state the relevant result from (5].

OR: given n bits by, by, . .., b,, compute their logical OR.
Proposition 3.1. The time lower bound for computing the OR of n bits on the CREW-PRAM is
Q(log n), independent of the number of processors and memory cells used. O

In addition, we shall rely on the following recent result of Lin ¢l al. [8].

Proposition 3.2. Any computation that takes O(i(n)) computational steps on an n-processor
mesh with multiple broadcasting can be performed in O((n)) computational steps on an n-processor
CREW-PRAM with O(n) extra memory. O

It is important to note that Proposition 3.2 guarantees that if Tys(n) is the execution time of

an algorithm for solving a given problem on an n-processor mesh with multiple broadcasting. then
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there exists a CREW-PRAM algorithm to solve the same problem in Tp(n) = Ta(n) time using
n processors and O(n) extra memory. In other words. “too fast™ an algorithm on the mesh with
multiple broadcasting implies “too fast™ an algorithm for the CREW-PRAM. This observation is
exploited in [8] to transfer known computational lower bounds for the PRAM to the mesh with
multiple broadcasting. ,

We show that the time lower bound for EMST, RNG. and SFNG is Q(logn) on the CREW-
PRAM, by reducing the OR problem to each of these problems.

We first present the lower bound argument for the IEMST problem. For this purpose, let
01.b2,...,b, be an arbitrary input to the OR problem. Consider a circle (" and let py.pa..... Pon
be equally spaced points on the boundary of C'. It is easy to construct (' such that the points are
1 unit apart. Associate with every bit b;, (1 <7 < ), the pair of points p; and pyy; on C. I b; = |
then perturb p; and pp4; by a small amount ¢ clockwise. Let I’ be the resulting polygon with its
vertices denoted in clockwise order by pi,pa....,pa,- It is easy to see that P is unimodal.

If by = 1 then the answer to OR is 1 and we are done. Otherwise, consider any algorithm that
correctly returns the EMST of the polygon P. Clearly, EMST has 2n — | edges. In O(1) time n
processors can identify the unique edge of P that does not helong to the EMST. Now the answer
to OR is 1 if and only if the length of this edge is larger than 1. Since the construction of P takes
O(1) time using n processors on the CREW-PRAM. Proposition 3.1 implies the following result.
Theorem 3.3. The task of computing the Euclidian Minimum Spanning Tree of an n-vertex
unimodal polygon has a time lower bound of Q(logn) on the CREW-PRAM, regardless of the
number of processors and memory cells available. O

It is important to note that the polygon P used in the reduction above is always convex, in
addition to being unimodal. Therefore, we have the following result.

Theorem 3.4. The task of computing the Euclidian Minimum Spanning Tree of an n-vertex
polvgon polygon has a time lower bound of Q(logn) on the CREW-PRAM, independent of the
number of processors and memory cells used. O

Next. we discuss the time lower bound for the SN problem for a set S of points in the plane.
Let by, b, ...,b, be an arbitrary input to the OR problem. With every bit b;, 1 < i < n, associate
the point p; = (%,0) if b; =0 and p; = (%,2) otherwise. Now, the set 5 consists of all the points
pi defined above, along with the point pg = (0,0). It is easy to confirm that our construction
guarantees that pg and p, are symmetric furthest neighbors at distance 1 if and only if the OR of
01,03, ...,b, is 0. Since the construction of P takes O(1) time using » processors on the CREW-
PRAM, Proposition 3.1 implies the following result.

Theorem 3.5. The task of computing the Symmetric Furthest Neighbor graph of a set of n points
in the plane has a time lower bound of Q(logn) on the CREW-PRAM, regardless of the number of
processors and memory cells available. O

By Proposition 3.2 and Theorems 3.3, 3.4, and 3.5 combined we have the following result.
Theorem 3.6. The task of constructing the EMST of an n-vertex unimodal polygon as well as the
task of constructing the SFN of a set of » points in the plane has a time lower bound of Q(logn)
on a mesh with multiple broadcasting of size n X n. O

4 The Algorithms

Our goal is to design simple time-optimal algorithms to compute the ANN. EMST and RNG of an
n-vertex unimodal polygon as well as for computing the SI'N of a set of » points in the plane.
Recently, the authors [11] have exhibited a rather difficult algorithm for computing the ANN of
an arbitrary set of points in the plane. To solve the ANN problem for unimodal polygons we rely
on the following simple fact whose proof follows directly from definition.
Observation 4.0. In a unimodal polygon every edge is adjacent to its nearest neighbor. O
Observation 4.0 suggests an O(1) time algorithm for the ANN problem. We omit the details.
Recently, Olariu [9] has developed simple linear-time sequential algorithms to compute the EMST
and RNG of a unimodal polvgon. We now recall a number of relevant properties of unimodal
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polygons established in [9]. Let P = po.p1.....pn—1 be a unimodal polygon.
Proposition 4.1. [9] If a diagonal of P is an edge of RNG( /) then its endpoints belong to the two
" longest edges of P. O
Call an edge ¢ of RNG(P) P-critical if ¢ ¢ P. It is worth noting that Proposition 4.1 asserts that
if p;p; is P-critical, then p; and p; must be endpoints of the two longest edges in P. A natural
question to ask is: “How many P-critical edges can RNG(P?) contain?™ The answer to this question
is given by the following result.
Proposition 4.2. [9] The RNG of a unimodal polygon I’ contains at most one P-critical edge. O
An important consequence of Proposition 4.2 is the following.
Corollary 4.3. The EMST of an n-vertex unimodal polygon P shares at least n — 2 edges with P.
d

The following result makes Corollary 4.3 more precise, by characterizing the diagonals of P
which can belong to MST(P).
Proposition 4.4. [9] A diagonal of P is an edge in EMST(P) if and ouly if it is a P-critical edge
in RNG(P). O

We begin by showing that given an n vertex unimodal polygon I = py,pa, ..., pn. stored one vertex
per processor in the first row of a mesh with multiple broadcasting of size n x n. the task of detecting
the edges of P((+) that do not belong to RNG(P) can be performed in O(1) time. For definiteness.
assume that for every i, 1 < i < n, processor P(1,1) stores the vertex p;. Using the vertical buses we
replicate the contents of the first row in all the rows of the platform. Next, for every i, <7 <n—1,
processor P(i,1) broadcasts the edge p;p;+1 to all the processors in row i. Similarly. processor P(n,n)
broadcasts the edge p, p; throughout row n. Every processor in row i that detects that the point it
stores in inside LUN E(p;,p;+1) sets a local register to 1. All other processors set the register to 0.
The following result is key for our O(1) time algorithm for computing the RNG(P).
Lemma 4.5. For every row i, the set of processors that store a 1 form an interval. O
By virtue of Lemma 4.5, tho leftmost processor in row i that stores a vertex that lies msule
LUNE(p;, pis1) can be detected in O(1) time. In turn, this processor informs P(i,7) that the
edge p;, pi+1 cannot belong to RNG/(P). To summarize our findings we state the following result.
Theorem 4.6. The task of computing the RNG(/P?) of an n-vertex unimodal polygon can be
performed in O(1) time on a mesh with multiple broadcasting of size n x n. O

We are now in a position to present an algorithm to compute the EMST(/?) of an n-vertex
unimodal polygon P = p1.pas ..., pa. We begin by computing the two longest edges of P and denote
them by p;piy1 and p;pj41, respectively. Let p,ps be any critical edge of the polygon determined
by pi.pi+1-Pj, and pjy1. If such a critical edge exists then EMST(F”) and RNG(P) coincide and are
obtained from G(P) by removing the edges p;p;+1 and p;pj4+1 and adding the critical edge p.ps.

On the other hand, if such a critical edge does not exist. then EMST(P) is obtained from G(P)
by removing the edge p;pi+1. The correctness of this simple and surprising algorithm is guaranteed
by the following result in [9].
Proposition 4.7. Given a unimodal polygon P, the above procedure correctly computes the
EMST(P). O
By Proposition 2.1, computing the longest and the second longest edges of P as well as testing
whether or not LUNE(p;, pig1) is empty takes O(logn) time. Thus. Proposition 2.1. Theorems 3.6,
and 4.7 combined imply the following result.
Theorem 4.8. Let P be an n-vertex unimodal polygon well stored in a mesh with multiple
broadcasting of size n x n. The Euclidian Minimum Spanuing Tree of P can be computed in
O(logn) time on a mesh with multiple broadcasting of size n X n. Furthermore, this is time-optimal
on this architecture. O

To compute the SFN of a set S of points in the plane. we need the following result [16].
Proposition 4.9. Every symmetric furthest pair of points in 5 is an antipodal pair in the convex
hull CH(S). O
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Proposition 4.9 motives us to proceed in the following sequence of steps.

Step 1. Compute the convex hull CH(S) of §. We note that using the time-optimal algorithm of
[10] the task specific to this step can be performed in O(logn) time;

Step 2. Generate all the antipodal pairs of CH(.9). It is well-known that the number of these
antipodal pairs is bounded by O(n). It is also worth noting that the algorithm of [3] generates these
pairs in O(log ) time and stores them in the first row of the mesh;

Step 3. For each such pair determine if it is a symmetric furthest pair. This can be done in O(logn)
time using the first steps of the diameter-finding algorithm of [3].

Thus, this simple algorithm runs in O(log ») time. To summarize, we state the following result.
Theorem 4.10. Let S be an arbitrary set of n points in the plane. stored one point per processor in
the first row of a mesh with multiple broadcasting of size n x n. The Synmnnetric Furthest Neighbor
graph of S can be computed time-optimally in ©(logn) time on this architecture. O
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