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Abstract

Under the Euclidean metric in 3-space, the bisectors of three points intersect in at most one
connected component — namely, a line. In contrast to this, we show that, under non-smooth convex
distance functions, there is no general upper bound to the number of connected components of the
intersection of the bisectors of three points in 3-space. Our result is important for the further study
of abstract Voronoi diagrams in 3-space.

1 Introduction

Voronoi diagrams are an important construct in computational geometry. In high-dimensional Euclidean
spaces, there are few studies of Voronoi diagrams under convex distance functions other than the Euclidean
one. In this paper, we continue the study of general convex distance functions initiated in [4, 6], where only
smooth distance functions are considered. The reasons for this study are: 1. To generalize the abstract
Voronoi diagram from 2-space [5] to 3-space, we need to know structural properties of bisectors, as well
as of their intersections. The work of Boissonnat et al [2] indicates that a direct approach to computing
Voronoi diagrams under general polyhedral distance functions might be very difficult. 2. Study of a
restricted class of the multivariate generalization of the Davenport-Schinzel problem [10]. 3. Knowing
properties of bisectors may help in solving problems from related areas, e.g. [8].

We prove some structural properties for the intersection of bisectors, and that there is no universal
bound on the number of connected components of the intersection of bisectors under non-smooth distance
functions.

2 Preliminaries

Let M be a convex body in d-space containing the origin O in its interior. For any »r > 0 and p € R4,
we call the homothet p + rM of M the M-sphere centered at p with radius r. Given any points r and
y € R?, we define the distance induced by M from z to y, denoted du(z,y), as the radius of the smallest
M-sphere centered at z that contains y. Equivalently, set N = —M, then the ray from y to z intersects
the boundary of N + y at a point z'. Clearly, we have dar(z,y) = |zy|/|z'y]. We call das(:,) the convez
distance function induced by M. Call dyr smooth if M is smooth.

“We define the bisector of two distinct points p and g € R¢, denoted B(p, g), to be the set of all points
z € R? so that dps(z,p) = dar(z, q) holds.

Let C be a convex body in R¢. Let m be a point on the boundary of C. A supporting line of C at m
is a line contained in a supporting hyperplane of C at m.

Any two distinct points in R? are called to be in general position with respect to the distance function
dy if any supporting line of M that is parallel to the line connecting them has only one point in common
with M. From now on we always assume the general-position condition for any pair of sites we consider.

We now recall the facts needed to prove our results in the next section. Most of these facts can be
found in [4], they hold also in non-smooth distance functions. Denote by ,,(C) the set of all points of
the boundary of C at which there is a supporting line parallel to pg. In the planar case, the set Z,,(C)
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consists of exactly two points, denoted opq,1(C) and opq,2(C). In the 3-dimension case, the set T,4(C) is
a simple closed curve.

For any p € R?, call the placement of N at p the set N(p) = N + p. For simplicity, we set Tpq(p) =
Tpe(N(p)). The set Tp4(p) divides dN(p) into two parts, one of them is closer to g !, denote it Fp,(p).
Let z be any point of the bisector of p and g. The ray from p to z intersects N (p) at a point u of Fpy(p).
Call u the footmark on N(p) of z. The set of all footmarks on N(p) of B(p,q) is the set Fpq(p).

(a) (b)

Figure 1: Strip bounding the bisector.

To avoid notational confusions in latter sections, we refer to sites in the plane often as a, b and ¢ instead
of p,q and r. The strip bounded by the rays from a to the points of Xz5(a) and from b to the points of
Zab(b) bounds the bisector of a and b, call it the strip bounding the bisector of a and b, see Figure 1(a).

Set B(p,q,7) = B(p,q)NB(g,r). We now describe how to reduce the problem of constructing B(p, g,)
to a 1-dimensional family of planar problems.

Figure 2: Constructing B(p,q,7). We down-scale the spheres so that they are disjoint.

Let z be any point of B(p,q,r). Let u,v and w be the footmarks of z on N(p), N(q) and N(r),
respectively. The footmarks span a plane (u,v,w) parallel to (p,q,r), the plane spanned by the sites p,q
and . In each plane spanned by the footmarks there are no other footmarks of any point of B(p, g, r). Set

1We down-scale N(p) and N(q) so that they are disjoint.
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E = (u,v,w). It has been shown that u,v and w are exactly the common points of a unique convex curve
homothetic to the reflection of N(p) N E (with respect to a point in its interior) with the cross section of
N(p),N(q) and N(r) with E, respectively. Conversely, if E is a plane parallel to (p,q,r) that properly
intersects N (p) then the triple of points that are determined that way are the footmarks of a unique point
of B(p, g,r). Using this property, we construct the set B(p, g, r) as follows. See Figure 2.

We sweep the body N(p) from one end to the other end with a plane E parallel to the plane (p,q,r).
At each such position of E, determine the footmarks u(E),v(E) and w(E) on N(p) N E,N(g) N E and
N(r) N E, respectively.

How to determine the footmarks? We fix any interior point of N(p) N E, denoted p(E), as a center
for defining a (planar) convex distance function 6(E) having the reflection of N(p) N E as its unit circle.
Set g(E) = p(E) + pdg, and r(E) = p(E) + p#. Clearly, N(¢g) N E and N(r) N E are the placements of
N(p) N E at g(F) and r(E), respectively.

Consider, under the distance function §(E), the bisectors B(p(E),¢q(E)) and B(g(E),r(E)). If they
intersect then denote the intersection by X (E). The footmarks u(E),v(E) and w(E) are exactly the
intersection of the segments X (E)p(E), X (E)q(FE) and X (E)r(E) with the boundary of N(p)NE,N(q)NE
and N(r) N E, respectively. (The intersections do not not depend on the choice of p(E).)

If M is smooth then each slice N(p) N E is smooth too. This implies that the strips bounding the
bisectors B(p(E), ¢(E)) and B(q(E),r(E)) cross. Therefore, B(p(E),q(E)) and B(q(E),r(E)) intersect
for each E. We conclude that B(p, q,7) is a single curve.

However, if M is not smooth — e.g., polyhedral bodies — then the slices N (p) N E need not be smooth.
Consequently, B(p(E),q(E)) and B(g(E),r(E)) need not intersect, i.e., point X(E) need not exist. In
fact, as shown in Figure 1(b), the strips bounding the bisectors B(a,b) and B(b,c) do not cross because
the points 04,1 (b) and 4.1 (b) coincide. Therefore B(a,b) and B(b, c) do not intersect.

We need the following in the next section.

Lemma 1 Let Ey be a position of E so that the point X (Eo) ezists. Then, for any position of E
sufficiently close to Ey, the point X (E) exists.

Proof: The point X (Ep) exists, i.e., the planar bisectors B(p(Eo),q(Eo)) and B(q(Ep), (Eo)) intersect.
Thus, there are two crossing strips bounding these bisectors. Moreover, because each two of the points
p,q and r are in general position the intersections of the curves £, (z) with E, where z,y,2 € {p,q,7},
change continuously with E (in the obvious sense). Therefore, for any E sufficiently close to Ey, there are
two crossing strips bounding some two (planar) bisectors. (Actually, these strips have the same “names”
as the strips above.) Clearly, the point X (FE) exists. O

3 Main results

Let F be a 2-dimensional closed surface homeomorphic to a plane. Any three disjoint bi-infinite curves
on F divide F into disjoint regions. Call any three bi-infinite curves on F' to be parallel if the resulting
decomposition of F is homeomorphic to the decomposition of the plane that results from an arrangement
of 3 parallel distinct lines on it. Figure 3(a) shows non-parallel bi-infinite curves. Call a set of disjoint
bi-infinite curves on F to be star-arranged if no three curves among them are parallel. It is not hard to
see that the decompositions of F' that result from any two star-arranged sets of bi-infinite curves having
the same cardinality are homeomorphic.

Theorem 1 Let p,q and r be three points in 3-space, each two of them are assumed to be in general
position with respect to dys. Then we have:

1. Each connected component of the intersection of B(p,q) and B(q,r) is a bi-infinite curve.
2. The bisectors B(p,q) and B(q,r) intersect transversely whenever they intersect at all.

3. On each bisector, the connected components of B(p,q)NB(q,r) form a star-arranged set of bi-infinite
curves.
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(a)

Figure 3: Star-arranged bi-infinite curves.

Proof: (Sketch) 1. Each component of B(p,q) N B(g,r) is closed and, by Lemma 1, does not have a
boundary. So it is either a bi-infinite curve or a simple closed curve. The latter case cannot occur because
the footmarks of B(p,q) N B(g,r) are unique in each sweeping plane E during the monotone sweep of the
body N (p).

2. This is a consequence of 1, the starshaped-ness of the Voronoi regions, and the fact that bisectors
are surfaces.

3. If there are three connected component that are parallel curves then some Voronoi region is discon-
nected, which is impossible. (This is related to the planar non-degenerate abstract Voronoi diagram: any
two bisectors of three sites intersect in at most 2 points, see [5, Lemma 3.5.2.5]). O

Theorem 2 For every n € N, there is a distance function and three distinct points p,q, and r so that
the bisectors B(p,q) and B(q,r) intersect in at least n connected components.

Proof: We will construct a (symmetric) body H, so that the set of footmarks on H,(p) of points of
B(p,q) N B(q.r) consists of at least n connected components. Informally speaking, this can be achieved
by constructing the body as a stack of convex bodies so that a sweep through the arising non-smooth
body, using a plane parallel to some fixed appropriate one, alternately yields layers of smooth and non-
smooth convex cross-sections. Each layer of smooth cross-sections will ensure the existence of a connected
component of B(p,q)NB(g,7), and each layer of non-smooth cross-sections ensures that its neighbor layers
really yield different connected components.

(a) (b)
Figure 4: Constructing the body H,. The y-axis is normal to the drawing plane and points into it.

Start with a sphere S. We cut from it n slices (the slices Ci,...,Cr, in Figure 4(a)) all of which are
bounded by discs parallel to the zy-plane and have the same height.
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To construct the body H, from the remaining pieces, we glue the two innermost ones together, and
then successively glue the other, appropriately scaled up, outer pieces with the previously resulting inner
body. Figure 4(b) shows the resulting body H,.

The body H, is not smooth exactly at the points of the circles bounding the discs along which we have
glued the spherical pieces together. Denote these circles by D;, for i = 1,...,n. To choose the points p, g,
and 7 claimed in the theorem, we proceed as follows.

-+ Paiy1

) P2n+1

Figure 5: Critical positions of the sweep plane.

We sweep H, with a plane that is slightly inclined to the planes of the circles D;. See Figure 5.
During the sweep, the cross sections of H, change depending on the position of the sweep plane. Call
Py, ..., Py, the critical positions of the sweep plane, i.e., the positions where the (names of the) spherical
pieces contributing to the cross section change. Between any two such critical positions, the cross section
of H, is either a circle or the intersection of two distincts circles, refer to Figure 6(a) and (b). In the

latter case, the cross section is not smooth.
We are interested in the positions of the sweep plane where the discontinuity of the cross section occurs

exactly at its extreme point with respect to some fixed direction, say the y-direction, see Figure 6(b).

TN

O~

(a) (b) (c)

Figure 6: Cross sections determine how to choose p, g, .

At any such position, the one-sided tangents of the cross section are not parallel to the z-axis. (As we
will soon see, this is needed for choosing non-collinear points p, ¢ and r). This can be seen by observing
that, at that position, the centers of the intersecting circles do not lie on the segment connecting the
intersection points. Denote such positions of the sweeping plane by @i,...,@n. Then we can choose,
in a plane parallel to the sweeping plane, non-collinear points p,q and r so that, at any position @Q; of
the sweeping plane, the supporting lines of the cross section parallel to the lines pg and gr touch it at its
y-extreme point. See Figure 6(c).

Having determined the points p,q and r as above, we now prove that the intersection of the bisectors
B(p,q) and B(g,r) satisfies the claimed properties. Recall the construction of the footmarks of the points
of B(p,q) N B(g,r) in the previous section. For any position of the sweep plane within the range bounded
by the critical positions P; and P41, with ¢ = 0,...,n, the cross section of H,(p) is smooth. Therefore,
in each such plane there is exactly one footmark on H,(p) of a unique point of B(p,q) N B(g,r). Thus,
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each layer of planes between P2; and Py;4 corresponds to a connected component of B(p,q) N B(g,r).
Moreover, these components are distinct because at the positions Q1, ..., @ of the sweeping plane, which
separate the layers from each other, there is no footmark on H,(p) of any point of B(p,q) N B(q,r). O

4 Discussion

We have shown that if the convex body that defines the distance function is not smooth then the bisectors
of 3 points in general position may intersect in disconnected bi-infinite curves — in contrast to the case
of smooth distance functions [4].

In the plane, the complexity of Voronoi diagrams under any distance function is linear, the constant
factor does not depend on the underlying distance function. Essentially (and loosely speaking), this is
due to the property that the bisectors of any three points in general position intersect in at most 1 point.

In 3-space, Boissonnat et al prove that the complexity of Voronoi diagrams of n points under the
simplicial, L, and Lo distance function is O(n?). (Actually, they solve the problem in any dimension.)

Under the simplicial distance, the bisectors of 4 points intersect in at most 1 point, and following the
argument patterns in this paper, it is easy to see that the bisectors of any 3 points intersect in at most 2
bi-infinite polygonal chains. We suggest an extension of the “abstract” approach in [9] to prove the bound
O(n?) without using arguments specific to the geometry of homothetic simplexes as in [2].

More generally, we believe that the complexity bound O(n?) for Voronoi diagrams under the L, and
L, distance can be proved using only structural properties of the diagram. As we have seen, some of these
structural properties can be expressed by the number of connected components of bisector intersections
for 3 and 4 sites.
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