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Abstract

Let S be a set of n points in R*. It is shown that
a fair split tree can be used to find an L,-nearest
neighbor in S of any query point, in O(log*~! n)
time. This data structure has size O(nlog*~2n)
and an update time of O(logt~'n). For k = 2
this algorithm is optimal and can be used for
Manhattan metric. For £ > 3 the update time
can be reduced to O(log"~2nloglogn) applying
the fractional cascading.

This result is used to solve the dynamic
(1+¢)-approximate Lo-nearest neighbor problem
and the dynamic all-nearest-neighbors problem
within the same bounds. This improves previ-
ous bounds by logn factor.

1 Introduction

In this paper we address to the well-known post-
office problem. The post-office problem is stated
as follows [18].

The post-office problem: Given a set Sof n
points in R, store it in a data structure such
that for any query point p € R¥, we can ef-
ficiently find its nearest neighbor, i.e., a point
p~ € S that is closest to p,

d(p.p") = min{d(p,q): ¢ € S}.
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In the dynamic version of problem the set S is
dynamically changed by insertions and deletions
of points. It is an open problem [17, 21] if there
exists a dynamic data structure for the planar
problem having size O(nlog®™ n) and polylog-
arithmic query and update times.

We consider two weaker versions of the prob-
lem. First, we consider the post-office problem
for “simple” metrics, namely L;- or L.,-metric.
The Table 1 contains the previous results for this
problem in plane. We give an optimal algorithm
for solving the planar version of the problem, i.e.
with O(logn) update and query time using (n)
space. The algorithm is based on the fair split
tree [11, 12, 9] and the dynamic trees [5, 20].
We extend this algorithm to higher-dimensional
space. The algorithm has O(log¥~! n) query and
update time and O(n) space. Applying frac-
tional cascading for k > 3 we can obtain an algo-
rithm with O(log*~2 nloglogn) query time and
O(log*~? nloglog n) amortized update time.

Second, we consider the variant in which we
do not have to find the ezact nearest neighbor
p* of the query point p, but are satisfied with an
approrimate neighbor, i.e., a point ¢ € S such
that d(p,q) < (1 + ¢)d(p,p™), for some positive
constant ¢. There are two variant of the approx-
imate neighbor problem. In the first case, ¢ is
the variable, i.e. query input consists of a point
p and an approximation bound £. Arya et al. [3]
gave an algorithm with O((1+ 1)*logn) query




| update time | w/a |

query time

| w/a | space | reference |

log nloglogn w | lognloglogn a nlogn [17]

log°nloglogn | w |log®nloglogn | w n (7]
log* n w log®n a |nlog’n [14]
logn w logn w n this paper

Table 1. The data structures for the dynamic post-office problem in R¥. All bounds are “big-oh”. The
update times are either worst-case (w) or amortized (a).

time and O(logn) update time, using O(n)
space. Bespamyatnikh [10] obtained an algo-
rithm with O((1 + 1)*~! +logn) query time and
O(logn) update time, using O(n) space.

In the second case, ¢ is a constant. Applying
range tree techniques and fractional cascading
Kapoor and Smid [17] obtained a data struc-
ture of size O(rnlogf~!n) that allows to an-
swer to a query in O(rlogF~! nloglogn) time
and to update S in O(rlog*~* nloglogn) amor-
tized time. 7 is the number of range trees or
coordinate systems. Chan and Snoeyink [14]
noted that ris O((1+ %)“2;1). Applying the ap-
proach of Kapoor and Smid [17] to our dynamic
L -post-office algorithm we solve the approx-
imate L;-neighbor problem with a query time
of O(log*=? nloglogn) and an amortized update
time of O(log“~2 nloglog n), using O(nlogF~2 n)
space.

Finally we consider the all-nearest-neighbors
problem. Vaidya [22, 23] has given an opti-
mal O(nlogn) algorithm that computes the L-
neighbor for each point of S. Kapoor and Smid
[17] gave a data structure of size O(nlog"~! n)
that maintains for each point in § its Leo-
neighbor in O(log"~!loglog n) amortized time
per update. We presented an optimal algo-
rithm for dynamic all-nearest-neighbors problem
in plane under L, (L;) metric, i.e. with O(logn)
update time and O(n) space. In higher dimen-
sions we give an algorithm with the same com-
plexity bounds as the bounds of our dynamic
L.-post-office algorithm. In fact we prove that
any algorithm for solving the dynamic post-office
problem can be used for solving the dynamic all-
nearest-neighbors problem with the same com-

!The data structure of T. Chan and J. Snoeyink can
be used to solve the weighted L,-problem.
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plexity bounds.

2 The fair split tree

In this Section we describe a fair split tree as
in [10]. The fair split tree is a hierarchical sub-
division of space into boxes. We define a box
to be the product [a1,ay’) X ... X [ag,aq’) of d
semiclosed intervals. i-th side of this box is the
interval [a;, a;"). If all sides have the same length,
we say that the box is a d-cube.

Let s be a separator [10]. The separator is at
least Golden Ratio, i.e s > 1:’2*'—1 ~ 1.62

Definition 2.1 Let [a,a’) be an interval in
R and b be a point in this interval. The split of
the interval into the intervals [a,b) and [b,a’) is
fair splitif 372 € [1, ).

Definition 2.2 Let B = [aj,a;’) X ... X
[ag,aq’) be a box and ¢; € (ai,a;’) be a real
number for some 7. The split of B by the hy-
perplane z; = ¢; into the boxes B N {z|z; < ¢;}
and B N {z|z; > ¢;} is fair split of B if the split
of the interval [a;, a;’) by ¢; is fair split.

The fair-split operation generates a relation on
the set of boxes.

Definition 2.3 Let¢t A4 and B  be
d-dimensional boxes. The box A is said to be
a s-sub-boz of B if A can be constructed from B
by applying a (possibly empty) sequence of fair
cuts. We shall write B ~+ A. For d = 1, we shall
say that A is s-sub-interval of B.

The relation of s-sub-box is the product of s-
sub-interval relation.

We do not include the condition of almost cu-
bical boxes into the definition of the fair split of
boxes although we shall apply fair split only for
such boxes. The almost cubical boxes can be ob-
tained from cubes by applying repeatedly a fair




split by a hyperplane perpendicular to one of the
longest side of box.

Definition 2.4 Let B be a box with sides
S1,..-,8k. The box B is said to be a c-boz if, for
any 1,7 € {1,...,k}, s [35:1+ 3]

The fair split tree is the binary tree 7. With
each node v of the tree T, we store a box B(v)
and a shrunken box SB(v). The boxes satisfy
the following conditions.

1. For any node v, the boxes B(v) and SB(v)
are c-boxes.

2. For any node v, the box SB(v) is a s-sub-
box of B(v).

3. For any node v, SB(v)NS = B(v)N S.

4. If w has two children u and v, then boxes
B(u) and B(v) are the results of an fair split of
the box SB(w).

5. If v is a leaf, then |S N B(v)] = 1 and
SB(v) = SN B(v).

For a point p € S corresponding to the leaf v,
let B(p) denotes the box B(v).

Let parent(v), lson(v), and rson(v) denote
parent. left son. and right son of the node v of
T.

We use dmin(X,Y") to denote the distance be-
tween two sets X,Y C RF, ie. dnin(X,Y) =
inf{dist(z,y)|lz € X,y € Y}. dne(X,Y)
denotes the maximal distance between two
sets X,Y C R ie  dme(X,)Y) =
sup{dist(z,y)lz € X,y € Y}.

3 The dynamic post-office al-
gorithm in the plane

In this Section we modify the dynamic tree and
show that L..-neighbor queries can be answered
in O(logn) time.

At first we consider the degenerate case when
the path tree contains only one node. For sin-
gle node v of such solid path P, we store four
additional pointers

Zmin(v) = a point p € B(v) that minimizes py,
Zmax(v) = 2 point p € B(v) that maximizes pi,
Ymin(?) = a point p € B(v) that minimizes p,,
Ymax(v) = a point p € B(v) that maximizes p,.
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Let v be an internal node of the fair split tree
and u,w be the sons of v. We say that u has
type U P if the box SB(v) is split by a line y =
const and the box B(u) lies above it. In this
case we write type(v) = UP. Also we define
types DOWN, LEFT and RIGHT. Clearly,
there exist only four types.

At each internal node v of a path tree, we
store eight auxiliary pointers up_-Zmin, 4P-Tmax:
down _Tmin, doWn Tmax, l€ft Ymin, [€ft-Ymax,
Tight Ymin and right_ymax. Let vy,...,vr be 2
subpath corresponding to v, i.e.

vr = bhead(v),
Uk-1 = parent(vi),
vy = parent(vz) = btail(v).

Let S(v) C S be a set of points such that the
point locations for them pass through v. In other
words,

S U (B(v1) \ B(w)), if the solid

S U B(v), if no solid edge enters vy
S(v) = {
edge (w, k) enters v

Define UP(v). The point p € S(v) is included
into UP(V) if there is a node u of the fair
split tree such that btail(v) is ancestor of u and
type(u) = UP. Now we define the pointers

UPZmin(v) = a point p € UP(v) that
minimizes p;

uPp_Tmax(v) = a point p € UP(v) that
maximizes p;

The next six pointers can be defined in similar
way.

down zmin(v) = a point p € DOW N (v) that
minimizes p;

down zmax(v) = a point p € DOWN(v) that
maximizes p;

le ft Ymin(v) = a point p € LEFT(v) that
minimizes p;

left ymax(v) = a point p € LEFT(v) that
maximizes p;

right Ymin(v) = a point p € RIGHT(v) that
minimizes ps

right ymax(v) = a point p € RIGHT(v) that
maximizes ps




3.1 The nearest neighbor searching

Now we describe the algorithm for finding near-
est neighbor. For simplicity we assume that addi-
tional pointers are the coordinates of correspond-
ing points.

Given a query point g. We apply the technique
similar to the finding the sets E, and A(v) [8, 9].
The search uses a set V of nodes. We store V'
in a queue (a queue functions in a first-in, first-
out manner). An element of V' is a node of the
fair split tree or 2 node of a path tree. With
each node v € V' we associate a domain D(v) C
R* [10]. To define the domain D(v) we consider
three cases.

Case 1. v is a node of fair split tree. D(v) =
SB(v).

In the next two cases v is a node of a path tree
PT.

Case 2. vis aleaf of a path tree. v corresponds
to a node v’ of T. We replace v in V with a node
of T which is determined as follows. Note that
v’ is an internal node of T. Let u and w be sons
of ¢/. If u and w are linked to v’ by dashed edges
then we replace v with v/. If the edge (v',u)
is dashed and the edge (v'w) is solid then we
replace v with u.

Case 3. v is an internal node of a path tree.
The node v covers nodes v, ..., v of solid path
where parent(viy1) = v; for i = 1,...,k - 1.
If vy is the bottommost node of path tree then
D(v) = §B(v1) (v1 = btail(v)). Otherwise vy
has a son vy linked to it by a solid edge. The
domain D(v) = SB(v1) \ SB(vk+1)-

To process domains D(v) for internal nodes of
path trees we store two boxes B,y:(v) and Bin(v)
(possibly empty) such that D(v) = Bou(v) \
Bin(v). This information allows us, for a node
v € V, compute D(u) and D(w) where u and
w appear when we traverse the node v (and the
boxes B,u:(v) and Bin(v)).

The search algorithm uses the pointer pcand to
a candidate for nearest neighbor of ¢ and dcand
for the distance from g to pcand. Initially, we
set pcand := null and dcand := oc. When
the algorithm stops pcand point to the nearest
neighbor of ¢. The initial set V contains one
node pt_root(root(T)). The algorithm proceed
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the search step while V # 0. Let v be a node of
V. We show how to process this node. As was
explained above we traverse v and obtain nodes
u and w. Delete node v from queue V'.

Case 1. The query point ¢ lies in the domain
D(v). Add the nodes u and w to the queue V’
and stop processing of v.

Case 2. Consider the lines {; = {p|p1 —q1 =
p2 — 2} and Iz = {p|p1 + ¢1 = p2 + q2}. These
lines partition the plane into four quarters. In
the Case 2 the domain D(v) is contain in one
quarter of plane. Wlog D(v) lies in the quarter
{plp1 — a1 > |p2 — @2/} We can compute the
neighbor of ¢ in D(v) in O(1) time.

Case 3. The domain D(v) intersects both lines
l; and /5. Add the nodes u and w to the queue
V" and stop processing of v.

Case 4. The domain D(v) intersects one of
the lines /; and l,. Wlog D(v) intersect the ray
ray = {plp1 — @ = p2 — ¢2 > 0}. If the domain
D(u) (D(w)) does not intersect the ray then

e compute the nearest neighbor of ¢ in D(u)
and update pcand,

e add w to V, and stop processing of v.

Now D(u) and D(w) intersect ray. We shall
show that search shall traverse only one of two
nodes u or w (in fact other node can con-
tain the nearest neighbor). Compute d(g, D(u))
and d(q,D(w)). Without loss of generality
d(q, D(u)) < d(gq,D(w)). Let p be the point
which lies on the ray ray at distance d(g, D(w))
from query point gq.

The following special case demonstrate the
main idea of one node exclusion. Let D(u) and
D(w) are the boxes (hence u and w are the nodes
of fair split tree) and a vertical line split the box
B(v) into these boxes. If ymin(z) < p2 then there
exists a point r € D(u) such that

e 73 = Ymin(u) and

o d(g,7) < max{r; — q1,72 — g2} < max{p1 -
q1,p2 — g2} = d(g, D(w)).

Hence R?\ D(w) contains a nearest neighbor of
q and we can remove w. Add u to the queue Q.

If Ymin(u) > p2 then d(q, D(¢)) = Yminl®) — 2.
We take into account the nearest neighbor of ¢
in D(u). Add the node w to the queue Q.




Now consider the general case. Let
db = min(left ymin(u) — g2, down _zTmin(u) — q1)-

If db < d(p,q) then remove w and add the node
u to the queue Q. Otherwise take into account a
point p’ € D(u) such that d(p,p") = db, and add
the node w to the queue Q.
We omit the proof of the following Theorem.

Theorem 3.1 The above search algorithm
finds a nearest neighbor of a query point in
O(logn) time.

3.2 The maintenance of modified tree

Note that an insertion (deletion) of point in
(from) S causes O(logn) creations and updates
of nodes. We can modify the insertion (and dele-
tion) algorithm to mark these nodes. The num-
ber of marked nodes is O(logn). The parent of
any marked node is marked. We have to compute
the auxiliary pointers (four or eight) for marked
nodes. We apply the breadth-first search on the
search tree. It is easy to show that, for a node
v, the auxiliary pointers of v can be computed
in O(1) time if these pointers are known for the
sons of v.

Theorem 3.2 The auziliary pointers can be
maintained in O(logn) time per update of the
point set.

4 The dynamic post-office al-
gorithm in higher dimen-
sions

In this Section., we apply the range tree tech-
nique to generalize the dynamic post-office algo-
rithm of previous Section to higher dimensions.
For a_point p in R*, we denote by p’ the point
(p2,...,px) in R*¥"1). For a set A of points in
RF, we define ' = {p’ | p € S}). For the dimen-
sion k = 2, we use the data structure of previous
Section.

For the dimension k£ > 2, the data structure
is constructed as follows. The balanced binary
tree stores the point of S in its leaves. sorted by
their first coordinates. For each internal node v,
let S, be the set of points that are stored in its
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subtree. For v, we store (k— 1)-dimensional data
structure for the set S/. We apply dynamic frac-
tional cascading [13, 19] as in [17]. This proves
the following result.

Theorem 4.1 For the dynamic post-office
problem in k-dimensional space, k 2 3, un-
der Loo-metric, there is a data structure of size
O(nlog~%n) having O(log*~* nloglogn) query
time and O(log*~2 nloglogn) amortized update
time.

5 The dynamic all-nearest-
neighbors problem

In this Section we show that our dynamic post-
office algorithm can be used for solving the dy-
namic all-nearest-neighbors problem with the
same complexity bounds.

Theorem 5.1 Let DS be any data structure
for the dynamic post-office problem. Let S(n),
Q(n) and U(n) denote the size and query and
update time of DS, respectively. For the dy-
namic all-nearest-neighbors problem there is a
data structure of size S(n) having Q(n) + U(n)
update time.

Corollary 5.2 Using our dynamic post-
office algorithm we obtain the data structure for
the dynamic all-nearest-neighbors problem with
the following complezity bounds.

e For planar case, the data structure has size
O(n) and an update time of O(logn).

e For the dimension k > 3, the data structure
has size O(nlogF~2n) and an amortized up-
date time of O(log"~2 nloglogn).

We omit the proof of Theorem 5.1.
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