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1 Introduction

The transversal or stabbing problem is well-studied in computational geometry and has appli-
cations in image processing, robotics, hidden surface removal in graphics, etc. Given a number
of objects distributed on a two- or three-dimensional region, the objective is to check whether
a common transversal i.e., a straight line segment passing through all the objects exists, and if
so, determine the same. Edelsbrunner, Overmars and Wood (5] developed a method for com-
puting the transversal in E%, if it exists, in O(n®logn) time and O(n) space, where n is the
number of objects. However an O(nlogn) time algorithm exists for line segments of arbitrary
orientations [4], for isothetic rectangles of arbitrary aspect ratio[8], for circles of unequal radii
[1], and for a set of arbitrary polygons [3]. In E®, a stabbing plane is obtained in O(n?) time for
n line segments, and in O(n’a(n)) time for a set of polyhedra with n total vertices, where a(n)
represents the extremely slowly growing functional inverse of Ackermann’s function. In general,
the hyperplane stabber for n lines in E¢ can be reported in O(n¢) time [2]. Other variations of
shooting problem have been considered in [9, 10, 11].

This paper outlines a variant of the classical stabbing problem which is called the shooter
location problem. A shooter can fire or emit rays along straight lines in arbitrary directions.
The position of the shooter and/or the locus of the shooter’s motion are given. A ray stabs
all the objects in its linear path of motion from its origin upto infinity. Our objective is to
minimize the number of shots necessary to exhaust (hit) all the objects. Thus, instead of finding
a transversal (if it exists) through all the objects, we are interested in determining the minimum
number of shots hitting all objects, subject to certain constraints the position or the locus of the
shooter. In this paper, we shall discuss the case where the targets are straight line segments.
The technique can easily be extended to account for any arbitrary shaped polygonal objects on
the 2-D plane. If multiple shooters are available and each shooter is allowed to fire a single ray in
a fixed direction from a given shooting line then the minimum number of shooters required and
their positions can trivially be obtained in O(nlogn) time using interval graph. If two shooting
lines are given, the problem becomes NP-complete [6].

2 Formulation

We consider a finite set S of n straight line segments called sticks, each with finite length but
arbitrary orientation, within a rectangular bounding box. A shooting line L passing through
the box is given, and the shooter can be positioned anywhere on the line within the box and
can emit multiple rays in arbitrary directions. The problem is to locate the position p of the
shooter on L so that the number of shots required to exhaust all the objects is minimum. First
we introduce the more primitive problem, called the fizved shooter problem. The formulation
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of the original shooter location problem will follow subsequently.

2.1 Fixed shooter problem

Consider a single shooter, positioned at a fixed point inside the bounding rectangle. The shooter
is allowed to take multiple shots in arbitrary directions. The objective is to find the different
firing angles, so that number of shots is minimized.

To solve this problem, we proceed as follows. For each member £ of S, join both the end points
of £ with the specified point p, and extend these two lines upto the boundary of the floor to get
its projection. Thus we obtain a set of arcs around the boundary of the floor. Now consider a
graph whose nodes correspond to the arcs thus obtained; between two nodes, there is an edge if
the corresponding arcs have a common point along the peripheri of the boundary. This graph
is refered as circular-arc graph [7).

Definition : A set of nodes { v;, i =1,2,... ,k} of the circular-arc graph is said to form a linear
clique if all the arcs represented by them have a common point along the boundary of the circle,
and if the set is maximal, i.e., it is not subsumed by any other bigger set [7].

The minimum number of shots required to hit all the line segments from point p, is thus equal
to the size of minimum linear clique covering all nodes of the above circular-arc graph. The
number and directions of the shots can be obtained in O(n) time if the end points of the arcs
are sorted along the boundary of the circumscribing circle [7].

2.2 Shooter location problem

In this problem, a shooting line L is given. The shooter can sit at any point on L and can fire
multiple shots in arbitrary directions. The goal is to locate the position p of the shooter on line
L within the bounding rectangle, such that the number of shots required to hit all the objects
is minimized. Notice that, each point on line L might serve as the position of the shooter; thus
the solution space is infinite. We first reduce the search domain into finitely many classes, and
then select the best position of the shooter.

To solve this problem, let us consider each pair of line segments (¢;, £;) from the set S. On
L, there are certain intervals from which both ¢; and £; can be hit by a single ray, fired in an
appropriate direction (we call this region as '+’ region for the pair (£;, ¢;)) in L; also there will
be some regions on L from which the shooter needs two rays to hit £; and £; (we call it ‘-’
region on L). We will now show that it is sufficient to consider onle the ‘+’ regions for all pairs
of sticks.

Consider a pair of non-intersecting sticks (£;,¢;), and let us define a separator line 7;; such that
¢; and ¢; lie in the opposite side of the straight line 7;;. It is easy to observe that there exist an
infinite number of separators of (;,£;). A separator 7;; is said to be extremal if it touches the
end points of ¢; and £;. Needless to say, there exists exactly two extremal separators for every
pair of non-intersecting sticks (as shown in Fig. 1). Let these two extremal separators meet the
shooting line L at points z; and pua.

Lemma 1 For every pair of non-intersecting sticks (£, £;), the nature of the region
changes from ‘4’ to ‘=’ or from ‘=’ to ‘+’ at a point q on the shooting line L, if and
only if an extremal separator passes through gq.

Proof : Clear.
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Thus, the shooting line L is divided into at most three regions at the points p; and ps with
either one ‘+’ region between two ‘—’ regions, or one ‘—’ region between two ‘+’ regions (Fig.
1). For all pair of sticks {(¢;, ¢;) | i # 4,4,5 = 1,2,...n}, we find the ‘+’ regions. If a pair (4, ¢5)
is intersecting, the entire span of L is marked ‘+’, because, from any point on L, the intersection
point of £; and ¢; can be hit by a single ray (see Fig. 2). Thus, in our algorithm, we shall ignore
the ‘4 regions of all pairs of intersecting sticks and consider the ‘+’ regions of non-intersecting
sticks only. The number of ‘+’ regions generated by all pairs of non-intersecting sticks is O(n?)
in the worst case, since for each such pair, at most two ‘+’ regions are generated.

We now consider an interval graph G* with the intervals that are labeled '+’ on the shooting
line L, and let us consider the set of all cliques of G*. Each clique in the interval graph defines
a zone, which is the maximum interval on L, common to all participating members of the clique
(see Fig. 3). Let Z* be the set of zones corresponding to all cliques of G*.

Lemma 2 The zones in Z* are mutually disjoint.

Proof : Clear.

Lemma 3 Let z and y be any two points on the line L such that both of them lie in the
same zone z € Z*. Let S(z) denote the subset of sticks that can be shot by any single ray
from z; then all members of S(z) can be shot by a single ray fired from y also.

Proof : Let L split the bounding box in two parts F} and F5. Since the set of sticks S(z) can
be shot by a single ray from z, some portion of them must lie in a specific side, say F1. Let S
= S, US>U S3, where Sj is the set of sticks which lie entirely on the side Fy; S, is the set of
sticks which intersect L and S3 is the set of sticks which lie entirely on the side F5. We truncate
each member of S» such that the portion lying in F}, remains present. Let S, denote the set
of truncated sticks. Now for each stick in S; |J S5, consider an arc on the circumscribing circle
of the bounding rectangle; each arc is obtained by joining its both end points with the point z
and extending it upto the peripheri of the bounding circle. The family of arcs will thus produce
an interval graph I,. Similarly, for the point y, consider the interval graph I for the same set
of sticks S; |J Sh. These two interval graphs are isomorphic as both z and y belong to the same
zone z. The set of sticks S(z) (S(y)) must correspond to a clique of I, (I). Since I, and I, are
isomorphic, all the members of S(z) can be hit by a single ray from y also. O

Lemma 4 Let z and y be any two points in a zone z on L. Then the minimum number
of rays fired from the point z, and that fired from the point y to hit all members of S, are
equal.

Proof : Consider the minimum set of rays that are required to hit all members of S, fired from
point z. Lemma 2 implies that for each ray fired from z (y), that hits the set of sticks S(z)
(S(y)), one can get a ray fired from y (z) that hits every member of the set 5(z) (S(y))- O

Lemma 5 Let z be a zone on the line L and R be an adjacent interval which is not a
zone (see Fig. 3). Then for each point in R, the minimum number of rays required to
fire all sticks is greater than or equal to the minimum number of rays required from a
shooting point in z.
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Proof : Let us consider two points z and y on L such that z lies in a zone z, and y lies in a
neighboring interval R outside the zone z. Let G.(V;, E;) and Gy(V,, E,) denote the circular-
arc graphs formed by the projections of the members in S on the circle that circumscribes the
bounding box as in the fized shooter problem. Clearly, V, = V,, but E; D E,. Since the
minimum nnumber of rays required to hit all the members of S from z (y) is equal to the
minimum linear-clique cover of the graph G, (G), the lemma follows. O

Thus, in order to find the desired position on L from which the number of shots required to
hit all sticks is minimum, it suffices to consider only one representative shooting point from
each zone. Finally, we select the one whose linear clique cover is minimum by solving the fired
shooter problem once for each zone. We now present our algorithm for solving this problem.

Algorithm
for each pair of sticks {(£, ¢;) | 2 # j, 4, =1,2,...n} do
begin

if the pair (4;, £;) is intersecting then ignore it

elsebegin
find two extremal separators of (£;, £;);
determine the region(s) marked ‘+’ on the shooting line defined
by these two separators;
end;
(* Let I be the set of all intervals marked ‘+’ on the line L *)
locate the set (Z*) of zones by finding all cliques in the interval graph G*
formed by the family of intervals I't;
for each zone z; € Z* do
begin
choose any representative point p; in z; on L;
find the minimum number of shots M(3) fired from p;, to hit all the sticks
(* by solving fized shooter problem *);
end;
report the point p; on L for which M(i) is minimum, and
the corresponding firing angles
end;

Theorem 1 The worst case time complexity of this algorithm is O(n®).

Proof: On the basis of lemmata 2 to 5, we find that one has to consider just one representative
point from each zone z; € Z*. For each such point, we calculate the minimum number of rays
necessary to hit all the objects by the algorithm described for the fixed shooter problem, and
choose the point for which it is minimum amongst them. The time complexity for constructing
Z* is O(n®), which is determined by its cardinality in the worst case. Initially, the end points of
each stick are joined with the end points of all other sticks to get the extremal separators. These
joining lines as well as the given sticks are extended (if necessary) to intersect the shooting line
L. The number of such intersections inside the bounding box may be (n® + n) in the worst
case. The relative order of the end points of the projections of sticks along the boundary will
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be different for these intersection points on L. So the circular-arc graph is to be updated for
each of these (n? + n) positions on L. It can be easily shown that when a shooter moves from
one intersection point to the other, the circular arc graph formed by the projected intervals
can be updated just by swapping two appropriate points of projection. Furthermore, these two
projection points are consecutive to each other in their circular order along the boundary. The
minimum clique cover is to be obtained for a representative point in each zone of Z* by the
linear time algorithm suggested in [7]. Thus, the total time complexity of our algorithm is O(n®)
in worst case.

3 Conclusion

In this paper, the shooter location problem is introduced. A set of line segments, called sticks,
are distributed inside a rectangular floor in 2-D, and a single shooter is available which is allowed
to move on a given shooting line and can fire in any arbitrary direction. The objective is to
minimize the number of shots. We have presented an O(n®) time algorithm for solving this
problem. A linear time preprocessing step is suggested in the original paper to handle the case
where the targets are arbitrary polygons. Next, the same techniques as that of sticks is adopted
to solve this problem. The problem of finding the desired position of a shooter in the floor for
firing all objects with minimum shots, is still open.
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Fig. 1 : Extremal separators of a pair of non-intersecting sticks generating '+' and '-' regions

Fig. 2 : '+ region for intersecting sticks
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Fig. 3 : Zones of '+' regions on L
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