- Fast Stabbing of Boxes in High Dimensions*

Franck

Abstract: We present in this paper a simple yet efficient
algorithm for stabbing a set S of n axis-parallel boxes in
d-dimensional space with ¢ points in output-sensitive time
O(dn +nlogc) and linear space. Let ¢* be the minimum
number of points required to stab S, then we prove that
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}, where z™ is the

- ) Since finding a min-
imal set of ¢™ points is NP-complete as soon as d > 2, we
obtain a fast precision-sensitive heuristic for stabbing S in
output-sensitive time and linear space. In the case of con-
gruent or constrained isothetic boxes, our algorithm reports
¢ < 2%71¢" and ¢ = O(c") stabbing points, respectively.
Moreover, we show that the bounds we get on c are tight
and corroborate our results with some experiments. We also
describe an optimal output-sensitive algorithm for finding an
optimal stabbing point-set of intervals.

1 Setting the problem

Let S be a set of n d-dimensional geometric objects. We
say that S is stabbed by k points if there exist k points
so that each object of S contains at least one of these
points. Given a set S as above, finding the minimum &
so that S can be stabbed by k points has been shown to
be NP-complete [FPT81] as soon as d > 2!. Therefore
this problem is intractable even for small values of n.
This problem is also referenced in the literature as the
covering set problem (or dually as the hitting set problem)
where it is transformed into an optimization problem by
means of matrix formulations. Let V = {S;|¢ € I} be
a collection of v = |V| = |I| subsets of 25 for a set
S of n elements. We want to find a minimal covering
collection, i.e. a subset I’ C I of indices so that S =
Uiep Si with |I'| as small as possible. More precisely,
we want to minimize e” x z = |I'| subject to Az > e for
z a {0,1}*-vector, e = (1,...,1) and A a (n x v)-binary
matrix, each column of which is the incidence vector of
one of the'sets I;, 1 <i < w.

Some heuristics that give approximation of the min-
imum stabbing number ¢* have been given. V. Chva-
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!More precisely, Fowler et al. [FPT81] showed that covering a
set of points with fixed-size squares (the so-called BOX-COVER
problem) is NP-complete as soon as d > 1.

Nielsenf

tal [Chv79] gave a cubic greedy algorithm to find a cover
set of size ¢ such that ¢ < ¢*(1+logt) where ¢ is the maxi-
mum column sum of A (¢ < n). D.S. Hochbaum [Hoc82]
proposed another cubic algorithm with a cover set of
size at most ¢*f, where f is the maximum row sum of
A. Interestingly, Bellare et al. [BGLR93] showed that
no polynomial time algorithm can approximate the op-
timal solution within a factor of (3 — €)log|S|, unless
NP C DTIME[n'°8!°¢ ™) where ¢ > 0.

One major drawback from the computational geome-
try point of view is that these methods do not consider
geometrical objects. (Although it has been shown that
the intersection graph? of d-dimensional convex objects
can be arbitrary as soon as d > 3 [Weg67].) This means
that we have to supply matrix A. One way to proceed is
to compute the whole arrangement of the objects and to
consider all the incidence sets defined by vertices. More
precisely, to each vertex we associate the set of objects
containing it. Thus, the size of the matrix is O(n?) x n
and these algorithms require O(n%+2) time and O(nd+!)
space.

D.S. Hochbaum and W. Maass [HM84] considered the
case of geometric objects and give a polynomial-time ap-
proximation scheme (PTAS). Their method is innovative
since it is general and takes into account the shape of the
objects. Unfortunately, their algorithm is time-costly
and considers sets of identical convex objects T, or du-
ally covering sets of points with convex translates T*.
(T™* is the centrally symmetric convex object of T').

Many applications coming from VLSI design, image
processing and point location have to deal with large
inputs [TF80]. Recently, H. Bronninman and M.T.
Goodrich [BG94] investigated these problems using the
Vapnik-Chervonenkis dimension (VC-dimension). They
obtain precision-sensitive set covers if the VC-dimension
is bounded as it is generally the case when considering
geometric objects. Their algorithm still relies on the fact
that matrix A is computed beforehand.

In this paper, we are even more restrictive by consid-
ering the case of axis-parallel boxes in high dimensions
(that are often considered in VLSI design, image pro-
cessing and point location in d-dimensional Euclidean
space); for example, we are given a set of points in E¢
and some hypercube Hy;. We want to associate to each
point a hypercube that contains it so that we minimize
the number of hypercubes. In other words, we want to

2The intersection graph of a set of objects is defined as follows:
we associate to each object a node and there exists an edge between
two nodes iff the corresponding objects intersect.
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cover the point set with a minimum number of patches,
i.e. translates of H;. Throughout the paper, the boxes
are considered to be closed, i.e. points on the boundary
of box B stab B. Our main algorithm, described in Sec-
tion 3, will not require to compute the arrangement of
the isothetic boxes®. We do not consider d as a constant
in the sequel.

The paper is organized as follows:

In Section 2, we consider the case of a family of n
intervals and give an optimal ©(n(logc* + 1))-time al-
gorithm that gives an optimal stabbing set of ¢* points.
In Section 3, we describe our algorithm in higher dimen-
sional spaces and study both its running time and its
approximation factor. We refine the analysis for sets of
congruent and constrained isothetic boxes. We corrobo-
rate our theoretical results with experiments. Finally, in
Section 4, we give several guidelines for future research.

2 An optimal algorithm for stab-
bing intervals

2.1 Principle

Finding the minimum value ¢* so that S can be stabbed
with ¢* points is easy and already known [HM84]. Con-
sider the interval I that has the rightmost left endpoint
g. I must be stabbed by a point and clearly, the best
place to stab it is on its left endpoint g. We then remove
all the intervals stabbed by ¢ and loop until all the in-
tervals are stabbed. We thus obtain an optimal set of c*
points that stab S. A straightforward algorithm based
on this fact has running time O(nc*) with linear space.
We show below how an adequate preprocessing can yield
an optimal output-sensitive algorithm in ©(n(logc*+1))
time and linear space.

2.2 Getting an output-sensitive algo-
rithm

The methodology consists in grouping the intervals into
groups and to preprocess each group in order to an-
swer queries efficiently [Cha95, NY95]. Typically, our
queries are of two kinds: “what are the intervals stabbed
by a point ¢?” and “which interval has the rightmost
left endpoint?”. Moreover, we must be able to remove
some of these intervals at some steps 7, 1 < i < c*.
We use the interval tree of McCreight [McC80, PS85]
as the data-structure for answering these queries. As-
sume we know an estimate c¢* of ¢*. Then, we group
the n intervals into [-C’-‘-] groups of size ¢* and prepro-
cess each group into a static interval tree? for a total
cost of O([%]c*logc*) = O(nlogc*). At some step i,

3Computing the arrangement of a set of n isothetic boxes costs
O(n?) time and space [PS85].

4In this context, static means that we know beforehand the 2¢*
endpoints of each group. We only remove intervals and do not add
new ones to that data-structure.

we find the rightmost left endpoint g; of the remaining
set of intervals and remove the n; intervals stabbed by
g; from their corresponding groups. Thus the total cost
of this step is O(n;logc* + Z logc*) (see [PS85], pp.
352-355). Therefore, the total cost of these c* steps is
O(nlogc* + % logc*) time since Y ni=n.

If we only want to test if ¢* > p we can derive a
O(nlog p)-time algorithm by choosing ¢* = p and stop-
ping the iterative process as soon as we have computed
¢ = min{c*, p} stabbing points. Note that our algorithm
works in time O(nlogc*) if ¢* < ¢ < c¢*2. Since we
do not know c* beforehand we iteratively estimate it by
squaring our current estimate. We start with any arbi-
trary value for c*, say ¢* = 2, and square it until ¢* > ¢*.
Thus, we obtain an O(E{:gh“.] n2') = O(nlogc*)
time algorithm. More details can be found in [Nie96).

Since verifying, if among n numbers, k are distinct re-
quires 2(n log k) time on the real RAM [KS86], it follows
that this lower bound also holds for the stabbing prob-
lem by reduction in linear time. Therefore, we obtain
the following theorem:

Theorem 1 Given a set S of n intervals, there ezists
an optimal output-sensitive algorithm that reports an op-
timal stabbing set of c* points in optimal ©(nlogc*) time
and linear space.

3 The algorithm in higher dimen-
sions

3.1 Principle

We describe below a “divide-and-conquer” strategy and
show how we can get results on the approximation factor
when dealing with axis-parallel boxes. Let S be a set of
n d-dimensional boxes. Let (O, {z1,...,z4}) denote the
orthogonal frame of the d-dimensional Euclidean space.
Each box can be viewed as the intersection of 2d half-
spaces. A facet f of a box B is a (d — 1)-dimensional
box of the boundary 0B supported by a hyperplane Hy.
If Hy is defined by an equation of type z; = [ for some
real [ then we say that f is a facet of type i. In other
words, a facet of type ¢ is perpendicular to the i-th axis.
A box B can be viewed as the ordered cartesian product
[15-,[r7 (B), 7 (B)] where [r] (B), 7} (B)] is the range of
B along the i-th dimension. We say that box B is to the
left (right) of z; = 1 if 7} (B) < (resp. 77 (B) > I). Let
X () be the set of values defining the facets of type i, i.e.
X® = (2|3 B € S such that r; (B) = z or r] (B) = z}
(X = 2|8)).
We describe below the algorithm (see also Figure 1):

Intervals (Basic case). If S is one-dimensional then
apply the optimal algorithm of Section 2.2 for pierc-
ing this set of intervals.
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Partition. Let zi) and xif_,)_l

and (n + 1)-th greatest elements of X(4).

2@ 42 _
pute the ‘median’ m = =723l of X(@) in linear

time [BFP*72]. Partition S accordmg to the hyper-
plane H,, : (zo = m) as follows:

be respectively the n-th
Com-

e Let S; be the set of boxes that do not cross
H,, and are to the left of H,,.

e Let S, be the set of boxes that do not cross
H., and are to the right of Hn,.

e Let S,, be the set of boxes intersecting H,.

Recursion. Stab the boxes of S,, by piercing the set of
(d—1)-dimensional boxes: S!,, = {BNHn|B € Sn}.

Conquest. Stab recursively S; and Ss.
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Figure 1: Partition of S into three subsets depending on
their location with respect to the hyperplane Hy, : (z4 =
m). We denote by S, the set of (d—1)-dimensional boxes
Sm N Hpy,.

Let ¢(S) and ¢(S) be respectively the running time
of the algorithm and the number of stabbing points de-
livered by this algorithm. Sometimes, when we want to
specify the dimension d of S, we put in subscript of these
notations a d. Thus, tx(S) and cx(S) denote respectively
the running time and the output-size of our algorithm
for a set of k-dimensional isothetic boxes S. Denote by
¢*(S) the minimum number of stabbing points of set S
of d-dimensional boxes. In the sequel, d is not assumed
to be a constant.

Our algorithm relies on the following simple facts:

Monotonicity. For any object O, c*({0}US) > c*(S).

Additive rule. Let Z; and Z, be two subsets of objects
so that VI, € T1, VI, € I, I; N I, = { then ¢*(Z; U
I;) = c*(Th) + ¢*(Z2)-

Cutting rule. Let S be a set of boxes and H a hy-
perplane of type i, with 1 < ¢ < d. Then,
c*(Sy) = c*(Sy) where 8 = {BNH|B € S} and
Sy ={B|BNH # 0}.

We study below the number c4(S) of points returned
by our algorithm:

Cd_l(Sm n Hm) ifS; =8 = 0,

ca(S) = { a1 (Sm N Hpm) + ca(S1) + ca(S2) otherwise.

Let us prove by induction on the lexicographi_c_a_lly or-

dered vector (d,n) that ca(S) < < (‘?) + (fi‘_s_):)_, - 1,
x+m—1).

where 2™ = (

Proof.

For d = 1, Section 2.2 describes an optimal algorithm
so that ¢;(S) = ¢*(S) < ¢*(S)+1-1since z° = 1 by con-
vention (finite calculus rules may be found in [GKP94]).
If |S| = n = 1 then cg(S) = c*(S) =1 < -ldi!+%}

Otherwise (d > 1 and n > 1), there are two cases
depending on whether S;,82 = @ or not (observe that
51] = |S2]).

If S; = S; = 0 then we have:

c“(S)m
-

wr o\d—2 w/ond
LC@F )

(8)+ T
«(S) < d-20 - d

= T@-1

since (C'(s)"'d;(ld)(_c;)(s)“‘z) > 1 (recall that ¢*(S) > 1).
If S;,S> # 0 then we have:

ca(8) = ca(S1) + ca(S2) + ca-1(Sy,),

(SR +c(8) ¢ (8) T + (o) T
Cd(S)SC(O d!C(z) +C(1)(d C)(z)
e e©?
+((d—1)! * (d—2)!)“3’

with 1 < ¢*(51),¢*(S2) and ¢*(S1) + ¢*(S2) < ¢*(S),
since ¢*(S.,) = ¢*(Sm) < ¢*(S). Since the rising fac-
torial power is a convex function, the right hand side
of the last inequality is maximized® for ¢*(S;) = 1 and

5Let f(-) be a convex function defined on range _[c_x b] then
maxa<c<p{f(c)} < max{f(a), f(b)}. Let gm(z) = ™. gm(x)
is convex on [0, +oo) for m > 0. Define f(z) = gm(x) + gm(c—
z) + gm-1(c) for 1 <z < c—1. f(z) is convex on [1,c~ 1] and
therefore ma.xlSzSc..l{f(a:)} < f(1).
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c*(S2) = ¢*(S) — 1 (or the other way around). It follows

that: ta(S) = An + ta(S1) + ta(S2) + td_l(S,'n),
~ L with 1 < |51],|8:| < §, |61] + |S2| + |8, = n and
oSV - 1. (e(S) — 1T o(S) = c(S1) + c(S2) + ¢(S,). Let o' = |Sy] = |Sa
ci(S) < (e c)l! I ((d)— 1)3 (IS.,] =n —2n'). Hence,
c*(S)m c*(S)E__z 14 19-1

+( )3Tt @ ta(S) < A'(n+n'loge(5y) + n'd + ' loge(Sy) +n'd +

@-1r T @=2)
(n —2n)logc(SL,) + (n — 2n')(d — 1)),

w/oyd—1
calS) < -C—("—gci)'——(c*(S) —1+d)+
(872 ta(S) < A’ (nd + 20" + n'(log o(S1) + log ¢(S2)) +
(d-1)!

and therefore

S)-1+d-1)-1,
(c(S) -1+ ) (n—2n’)logc(8,'n))-

But logc(S;) + logc(S2) is maximized when ¢(S;) =

()7 (8T o(Sz) < 49
ca(8) < dl + @d-1r 2 Therefore, we get

(m]
ta(S) < A’ (dn + 2n' log ¢(S) + (n — 2n') 1ogc(s;n)),
Remark. For small values of c*(S) we get an approx-
imation factor that is polynomial in d. As an example,  With ¢(57,) < ¢(S).
consider ¢*(S) = 3 then we have ¢(S) < d(d + 2). (The  Finally, we get £4(S) < A'n(d + log c(S5)).
approximation scheme of Hochbaum and Maass [HM84]
has an exponential dependence in d). However, when

c*(S) is large (say ¢*(S) > dni) we get the trivial We have shown:
bound ¢4(S) < n. It does not reflect the dichotomy
process. Therefore, by studying the relationships be-
tween ¢(S) and |S| = n, one might prove that ¢(S) <

Theorem 2 Let S be a set of n d-dimensional bozes.
Denote by c* the minimum number of stabbing points
of S. Then, there ezists an output-sensitive algorithm

* (log n-}-l!"'l . . . d
e"(8) =g (see [Nle%J for full detalls?. ' that reports a set of c stabbing points of S in time
. Let us now ;,naly(z;)the tt)ltx)ne spent by this algorithm  O(dn + nlogc) with lznear space whose approzimation
or reporting the c4(S) stabbing points. sy L0 Y=

We have: ¢ is bounded by min{<- d, + &y -~ Le Sig(;‘_"'l))'_}

ta(S) = 0 if S=0, Notethat S is of size O(dn).
BT T An + t4-1(SL) + ta(S1) + ta(S2)  otherwise.

with A some constant related to the implementation of 3.2 Congruent or constrained boxes

the partition scheme [BFP*72]. A box B = [b,t] is defined by its bottommost corner
We prove below by induction on the lexicographically p = (b;,...,b4) and its topmost corner t = (uy, ..., uq).
Em)iered vector (d,n) that ta(S) < A'(nlogce(S) + dn) Let S be a collection of n boxes:
x*).
5 = {[(bi,l, ceey bi,d), (’U,i,l, ...,'u,,-,d)]ll S l S n}.
Proof. If d = 1 then we proved in Section 2.2 an
O(nlogc(S) + n)-time algorithm. Therefore, ¢;(S) < - Ba =
Bn(loge(S) + 1) < A'n(loge(S) + 1) for A’ > B. If maxi,j=1.,n{%}, 1 <¢ < d Wesay that S
n =1 then t4(S) < Ad < A'd and (%) holds trivially for s constrained if B; = O(1) for 1 < i < d. In [Nie96],
A > A we exhibit an example where our algorithm reaches its
Otherwise (d > 1 and n > 1), consider the two cases worst-case performance. However, in order to build it,
depending on whether S;,S; = 0 or not: In the former we did consider stretched boxes, i.e. non-constrained
case, we have t4(S) = t4-1(S) + An. Thus, we get boxes.

u;,1—b; 1}

Let B; = max; = n{u”_bJl

ta(S) < A’n((d—l)+logc($)) +An < A'n(d+logc(S)). Lemma 3 Let S be a set of n congruent isothetic
d-dimensional bozes. Then, our algorithm guarantees
In the latter case (S1,S; # 0) , we have: that ¢(S) < 247 1c*(S).
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Proof. W.l.o.g. consider the case of (unit) hypercubes.
S is a collection of n congruent hypercubes. We prove
by induction below that ¢(S) < 24-1¢c*(S). Section 2.2

shows that the algorithm ensures ¢;(S) = ¢*(S) for
(unit) intervals. :
Otherwise, let S be a set of n d-boxes. Consider

the ordered sequence (left to right) of cutting hyper-
planes of type d: (Hm(l) : za = a1),...,(Hm(k) :
T4 = ax) with the associated partition of the hypercubes
Sh.(1),..., S, (k) (see the partition step of the algorithm).
Clearly, we have ai4; —a; > 3,1 < i < k— 1 for the
case of unit hypercubes. Therefore S,,(z) NS;,(j) =0 if
|t — 7] > 2. We have:

k k
=" ca1(S (1) <2972 (S ().

=1 =1

We can decompose the last sum taking into account
the parity of ¢ as follows:

[$1-1

ca(S) < 2¢- Z(ZC( v (21)) + c*(S,’n(2i+1))).

i=

But E 1 c*(S8,,(22)) = ¢* (U= L& £)Sm, (22)) < ¢*(S)

and Z,r_; i *(Sh.(20 + 1)) ¢*(Uizo..r51-15m (28 +

1)) < (S) since both S;,(2i) N Sj,,(2]) = 0 and

Sjn(2i+1)nS’ (2]+1)-0assoonasz¢_7
Therefore, we get:

ca(S) < 2972 x 2¢*(8) < 2¢71e*(S).
o

In [HM84|, Hochbaum and Maass also considered
this problem (in its dual form however) and gave an
O(ldnmd*’l)-time algorithm (a polynomial time approxi-
mation scheme) which ensures that ¢(S) < (1+3)%c*(S)
for a given integer [ > 1. Thus, for [ = 1 it yields an
O(n®)-time algorithm with performance ratio 2¢.

Using the same technique as above, we get the follow-
ing lemma:

Lemma 4 Let S be a collection of n d-dimensional con-
strained bores with Bj,...,By defined as above. Then,
our algorithm will return c(S) stabbing points so that

e(S) < (T, 2B:1)e" (S) = O(c*(S))-

We may assume w.lo.g. that B; = max;=;. q¢{B;}.
Otherwise, we make a simple rotation of the orthogonal
frame in linear time. This also means that we may have a
direction where the projected boxes are not constrained
since we are able to solve exactly the problem in one
dimension (see Section 2.2).

1+ H 4

1119

Figure 2: Finding a covering of 120 cities of the U.S.A.
Our algorithm reports a set of 25 unit squares covering
this 120 cities.

3.3 Experimental results

We did the implementation in C++ using the LEDAS
and CGALT libraries. The code length is about 1000
lines. As an application, we considered the following
problem (already mentioned in the introduction): given
a set of n cities C = {C1 = (21,%1),--,Cn = (Zn,¥n)},
we wish to cover them by a minimum number of copies
of a ‘unit’ square S = [~7,7] x [—7,7] of side length
2r. We associate to each city C; = (z;,y;) the square
Si=[zi—-rnzi+r)]xyi—ryi+r)forl <i<n.
Let § = {S1,...,Sn}. Now, we use the fact that C can
be covered with &k translated copies of S if and only if
S can be stabbed with k& points. We ran our program
on 120 cities of the United States of America (the input
file is freely distributed and may be found in the Stan-
ford GraphBase [Knu93]). The results are depicted in
Figure 2.

Figure 3 shows some experiments for sets S (with
|S] = 10000) that are 20-pierceable, i.e. ¢*(S) = 20. The
left chart shows the number of stabbing points reported
by our algorithm in case of congruent/nonconstrained
boxes. The right chart depicts the running time of our
algorithm. (We took the average over 20 trials). More
experiments concerning the number of different configu-
rations are described in [Nie96].

SLibrary for Efficient Data-structures and Algorithms.
Max-Planck Institut fiir Informatik, Im Stadtwald — 66123 Saar-
briicken — Germany.

"see “The CGAL Kernel

Sophia-Antipolis (France).

User Manual” INRIA
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Piercing Constrained vs. Nonconstrained Isothetic Boxes
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Figure 3: Impact of the dimension over a set S (c*(S) =
20 and |S| = 10000) of constrained/nonconstrained
d-boxes for 1 < d < 20. The right chart exhibits the
running time of our implementation

4 - Concluding remarks

Our algorithm can be easily parallelized onto PRAM
computers in order to gain efficiency (see [AL93]). This
paper raises some open problems:

e the hardness of approximation of ‘constrained’
boxes compared with ‘nonconstrained’ boxes inside
the polynomial-time hierarchy of problems.

e finding a PTAS (polynomial-time approximation
scheme) for the case of ‘nonconstrained’ isothetic
boxes. (Hochbaum and Maass PTAS [HM84] only
works for congruent boxes).

Another aspect of this problem that is currently be-
ing investigated is to give efficient algorithms to detect
whether a set of objects is k-pierceable or not for small
values of k and several classes of convex objects [KN96].
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