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1 Overview

Let S be a set of n points in the plane and F denote the set of all the line segments with endpoints
in S. A line segment pg with p,q € § is called a stable line segment of all triangulations of 5, if
no line segment in E properly intersects pg. The intersection of all possible triangulations of S then
is the set of all stable line segments in S, denoted by SL(S).

As a combinatorial problem, various properties of stable line segments of a set of planar points
have been investigated in [Xu92]. It is shown that the maximum number of stable line segments in 5
is 2(n — 1). There is an interesting relationship between stable line segments and so-called extreme
line segments EL(S) [Ed86]. A line segment pg with p,geS is called an extreme line segment if
{pg} = E N H for some open half-plane H [Ed86]. Then, we have that

CH(S) C EL(S) C SL(S).

A more important property is the relationship between SL(S) and so-called k-optimal triangula-
tions. Let T(S) denote a triangulation of S. T'(S) is called a k-optimal triangulation for 4 < k < =,
denoted by LOTk(S), if every k-sided simple polygon drawn from T'(S) is optimally triangulated by
some edges of T'(S).

Let SLk(S) denote the intersection of all possible LOTy(S)’s (i.e., the set of edges that are in every
LOTk(S)). Let MWT(S) denote a minimum weight triangulation of §. Then, we have that

SL(S)C SLa(S)C--- C SLi(S)- - C §Ln-1(5) S MWT(S).
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Figure 1:

In some special cases of S, SL(S)forms a connected graph as shown in Figure 1. Thus, an MWT(5)
can be constructed in polynomial time using the dynamic programming algorithm proposed in [Gi79,
K180].

So far the structure properties of SL(S) have been thoroughly studied, but not its algorithmic
issue.
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A recent result on finding a subgraph LOT(S) of SL4(S) [DM96] implies an O(n?*) time and O(n®)
space algorithm for finding SL(S) since it is not difficult to show that

SL(S) C LOT(S) C SLa(5).

In this paper, we shall propose two algorithms for computing SL(S). One is an O(n?logn) time
and O(n) space algorithm and the other is an O(n?) time and O(n?) space algorithm.

2 Introduction

A triangulation of a planar point set § is defined as a maximal set of non-crossing line segments which
have both endpoints in §. A minimum weight triangulation of S (denoted MWT(S)) is a triangulation
among all possible triangulations over S such that the sum of its total edge lengths is minimal. To
compute an MWT of a point set is an outstanding open problem, whose complexity status is unknown
since 1975 [SH75, GJ79]. An O(n®) time dynamic programming algorithm for constructing an MWT
of a simply polygon was given independently in [Gi79, K180]. Based on the above mentioned dynamic
programming algorithm, Anagnostou and Corneil [AC93] designed an O(n%*1) time algorithm for
computing an MWT of a point set with k nested convex polygons, and later Meijer and Rappaport
[MR92] improved the time complexity to O(nk) when each of the k nested polygons degenerated into
a straight line segment. Xu and others [Xu92, CGJ95] showed that if a subgraph of an MWT with
k connected components is given, then an MWT can be found in O(n**2) time. Up to now, none of
the existing algorithms for finding an MWT of a general point set achieves polynomial time bound.
An alternative direction is to identify a subset of line segments in E belonging to an MWT. The
advantage of this direction is two-fold. The more such line segments are identified, the more likely
the resulting subgraph will connect all the points in S. Then, the ultimate solution can be found in
O(n**2) time by using dynamic programming. On the other hand, it was shown in [XZ96] that finding
more line segments within an MWT can improve the performance of some heuristics.

Several investigations have reported on the subgraphs of an MWT, [BDE96, CX96, DM96, Ke94,
Xu92, Xu96, YXY94]. A trivial case is the set of line segments in all triangulations of a given point
set S (i.e., a set of stable line segments SL(S)). No detailed work was done on the algorithms for
computing SL(S). In the following section, we shall propose two algorithms for computing SL(S).

3 Algorithmic Issues

Let J denote the set of all triangulations of a point set S, then we have the following obvious facts:
Fact 1. SL(S) = Ny(s)esT(5), and
Fact 2. pg € SL(S) iff no line segment with endpoints in S properly intersects pg.

Note that the Delaunay triangulation of S, DT(S), belongs to J. By Fact 1, we first construct the
Delaunay triangulation DT(S) and then test whether the line segments in DT'(.S) are also in SL(S).
Note that the number of line segments in DT'(S) is linearly proportional to n, it is easy to design an
O(n?®) time algorithm by testing all possible intersections of the line segments with Delaunay edges.

With a more detailed geometric analysis, we can improve the time complexity from 0(n3) to
O(n?logn) and space complexity from O(n?) to O(n) or time complexity to O(n?) and space com-
plexity remains as O(n?).
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3.1 Algorithm 1

Lemma 1 Let pg be a line segment, {p,q}U S be a simple point set, |S|= n. To determine whether
there is a line segment with two endpoints in S that properly intersects pq can be answered in O(nlogn)
time and O(n) space.

Proof First, by a rigid motion we can transform point p to the origin and point ¢ on the z-axis and
denote its coordinates (z*,0),z* > 0. This can be done in O(n) time. In the new coordinate system,
S becomes S’, p — p’ and ¢ — ¢, p’ = (0,0) and ¢’ = (2*,0), and r = (z(r),y(r)) in §'. If no points
in $' are below (or above) z-axis, then no line segment with two endpoints in §’ intersects the line
segment L(p',q'). If there are points with y(p;) > 0 and y(p;) < 0 for p;,p; € ', we divide S’ into
two subsets

St ={ply(p)>0,p€ S}
SL ={p|y(p)<0,p€ 5}

This step can be done in O(n) time. For convenience of discussion, we assume there is no point 7
in §’ with z(r) = 0 or z(r) = z*, so we can divide $} and $_ into S§(-1),5%(0), S4(+1) and
S’ (-1),57(0), S_(+1) as follows:

Si(-1)={p|=z(p) < 0,p€ S}}
S, (+0)={p|0< z(p) < z*,p€ 54}
S (+1)={p|z(p) > z*,p€ 8}
S’ (-1)={p|z(p) <0,pe S}
5§ (-0)={p|0<z(p)<z*,pe S.}
S (+1)={p|2(p) > z*,pe 5.}

and clearly we have

8, = 54,(~1) U S4(0) U 84 (+1)
5§ = 8" (-1)uS.(0) U SL(+1).

This step can be completed in O(n) time. As shown in Figure 2(A), if 5%, (0) # 0 and S_.(0) # 0, then
there is a line segment with one endpoint in S’ (0) and the other in S’ (0) which intersects L(p’,q’)
(Figure 2(B)). To determine whether or not 5’ (0) and S’ (0) is empty needs only O(n) time. So
without lose of generality, we can assume that S’ (0) = 0.

Second, we sort points in $% (—1) and S (+1) lexicographically by polar angle at p" and ¢’ respec-
tively. In the new polar coordinate system, S’ (+1) becomes S (+1), and §(—1) becomes 5L (—1),
similarly S (+1)y and S (—1)g. Let | S4.(+1) |= m1,| §4(=1) |= m2, oy(r) denote the polar angle
of r from origin ' and a,/(r) denote the polar angle of  from ¢’. We have

Sy (+1)p = {pF | ep(pfi1) > ap(pf),i=1,2,--,m1 - 1}
Sfl-(_}_l)Q' = {qz+ ' QQ'(q:{-l) > aQ'(q?)ai = 1’2" Tty — 1}
S-,i-(—l)P' = {pz— | ap’(pi_+1) > ap'(pi—)7i = 1,27 cee, Mg — 1}
Sfi-(_l)q' = {q: | aq'(qi—-i-l) > aq'(q‘;—)ai = 1,27 cre,Mmg — 1}

The above sorting step can be done in O(nlogn) time [PS85]. Let u € S’. We discuss whether there

is a line segment with one endpoint u and another endpoint in S’ that crosses pq in following three
cases.

Case 1: u € S7(0).
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Construct two rays up’ and ug’, let a,, and o,y be the polar angles of up’ and ug’ in polar
coordinate system with anchor points p’ and ¢ respectively. Testing the rank of ey, in § (41), and
oy in S% (—1)¢’, can be done in O(log n) time binary search. This way we can find out whether there
exists a point in §(+1) U §%(~1) lying in the angle region R, between the two rays up’ and ug'.
(Figure 2(C)).

Case 2: u € SL(+1).

Construct two rays up’ and ug’, let a,, and a,y be the same as in Case 1. Test the ranks of
Qyp and ayy in S4(—1), and S (-1)y. (Note only points in S (—1) needs to be tested, since
u € §”(+1)). Thus, in O(logn) time we can find out whether there exists a point in S5’ (—1) which
lies in the angular region R, , . (Figure 2(D)).

Case 3: u € S_(-1).

A similarly analysis as in Case 2.

It has shown in the above discussion that the total computations to determine whether a line
segment with two endpoints in S intersects pg take at most O(nlogn) time. o

In the following, LI(S,pq) denotes the above algorithm that answers whether or not there exists
a line segment in E that crosses pg. By the above lemma, algorithm LI(S,pq) takes O(nlogn) time
and O(n) space.

Lemma 2 Let pq be a line segment, and let {p,q} U S be a point set in general positions, | S |= n.
Let E denote all the line segments in S. Then, whether or not pg crosses an element of E can be
answered in O(nlogn) time and O(n) storage.

Theorem 1 SL(S) can be found in O(n*logn) time and O(n) space, where | S |= n.

Proof It is clear that SL(S) must be contained in the Delaunay triangulation DT'(S). Thus, we start
with DT(S), which can be constructed in O(nlogn) time and O(n) space. Using algorithm LI(S,5q)
we test if an edge pg of DT(S) belongs to SL(S) in O(nlogn) time and O(n) space. The theorem
follows since the number of edges in DT(S) is O(n).

o
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3.2 Algorithm 2

The above time complexity bound can be reduced to O(n?) if the space bound increases to O(n?).

Figure 3:

Algorithm 2

o Find the arrangement for » lines, where each line is the dual of a point of S in the dual plane.
Denote this arrangement as A(Sp).

e Find DT(S); For each Delaunay edge e of DT(S) DO.

— Let p. be the intersection point of the dual lines of the endpoints of e. Let W(p,) be the
double wedge determined by these two dual lines. Traverse the portion of A(Sp) inside
W (pe), starting at p.. (Refer to Figure 3.)

— If a vertex of A(Sp) is found properly inside W (p.), then report ‘e is not in SL’;

— Otherwise, report ‘e is in SL’
¢ EndDo.

Theorem 2 SL(S) can be found in O(n?) time and O(n?) space, where | S |= n.

4 Concluding Remarks

We proposed an O(n?logn) time and O(n) space algorithm and an O(n?) time and space algorithm
for finding SL(S). It is interesting to see whether SL4(.S) can be computed in polynomial time.
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