Generating Rooted Triangulations with Minimum Degree Four
(An extended abstract.)

David Avis and Chiu Ming Kong

School of Computer Science
McGill University, Montreal
{avis,min}@cs.mcgill.ca

1 Introduction

A graph is a triangulation if it is planar and every face is a triangle. A triangulation is rooted if the external
triangular face is labelled. Two rooted triangulations with the same external face labels are isomorphic if
their internal vertices can be labelled so that both triangulations have identical edge lists.

In this article, we show that in the set of rooted triangulations on n points with minimum degree four, there
exists a target triangulation Ej; such that any other triangulation E, # E* in the set can be transformed to E,
via a finite sequence of single and double diagonal transformations. Using this result with the reverse search
technique, we present an algorithm for generating all non-isomorphic rooted triangulations on n points with
minimum degree four. The triangulations are produced without repetitions in O(n?) time per triangulation.
The algorithm uses O(n) space.

2 Background
2.1 Maximal Planar Graphs and Diagonal Transformation

A simple planar graph is maximal planar if and only if it is triangulated. Hence a triangulation of a
set of points in the plane is a maximal planar graph. In a maximal planar graph(MPG) G = (V, E),
|E| = 3|V| —6.

An edge in a triangulation is external if it is contained in exactly one triangle (not the external face) of
the triangulation. The vertices of the external edges are external vertices. Vertices that are not external
are internal vertices. An edge in a triangulation is internal if it is contained in exactly two triangles
(neither is the external face) of the triangulation. Such an edge bounds the two triangles.

The objects we want to generate are rooted triangulations with minimum degree four on n points
(given n), which, hereafter, will be referred to as rooted maximal planar graphs with minimum degree
four (rooted MPG4).

In a maximal planar graph G, let Aabc and Aabd be two adjoining triangular faces. The edges of these
faces form a quadrangle acbd with the diagonal (a,b). When this diagonal is replaced by (c, d), one obtains a
new maximal planar graph G’ with the same vertices and the same number of edges and faces. We say that
G' has been obtained from G by a diagonal transformation or a diagonal flip. This is possible only if
(¢,d) is not an edge in G already.

Additional details may be found in [4, 6].

2.2 Reverse Search Essentials

The reverse search method is developed by Avis and Fukuda [2]. It was used to generate all rooted trian-
gulations (without degree constraint) by Avis [1] and dually to generate all 3-polytopes by Deza et al [3].
It is a technique for generating all vertices of a graph whose edges are given implicitly by an oracle. Let
H = (T,U) be such a graph. In our application, each vertex in T corresponds to a rooted MPG4 with given
n. U is the edge set of adjacent vertices in 7. Two rooted MPG4 are adjacent if they differ by one edge
or two edges. The method works by finding a spanning tree in the graph H. To do this we first fix some
given rooted MPG4 with the required parameter n. Call the vertex in H corresponding to this triangulation
the target E:. We then define a local search function L, that given any vertex E, of H defines a unique
adjacent vertex in H, with the property that repeated application of L defines a path in H to the target. In

56

Al

v,

/ 2 3 \
! gl
vy T Vs vy T V3
/ \
Y1 et Vi Yi

V.

3 W T
Vl Vl Vl Vl
!) 7 T v % v
i
V2 V3

Figure 1: Reverse search tree of rooted MPG4 for n = 8

other words, (Eyn, L(Ey)) is an edge in U and L*(E,) = E;, for some finite integer k. The path generated
consists of a sequence of rooted MPG4 (for given n) that differ in one edge or two edges and ends with the
target MPG4. The set of all such paths form a spanning tree called the reverse search tree in H. Figure
1 shows the reverse search tree of rooted MPG4 for n = 8. The local search function is described in section
4. The arrows show the traces of applications of the local search function. The bold-faced edges are those
on which diagonal flips are performed.

The reverse search procedure is essentially a depth first search. It is initiated at the target E; and
traverses the reverse search tree of H by reversing the local search function. To do this we generate all
neighbours in H of any given vertex E, in T', in some given order. This is done by an adjacency oracle.
Using the adjacency oracle at Ej; we consider neighbours of Ej until we find a neighbour Ej such that
L(E,) = E*. We then replace E}, by E, and use the adjacency oracle to find (if possible) a neighbour E},
of E,, such that L(E}) = E,. If such a vertex exists we move to E! and continue. If we reach a node E, for
which no such neighbour exists, we backtrack by computing the parent E? = L(E,) of E,. We then continue
from EQ using the adjacency oracle to give the next neighbour of E? in the order after En,.

Hence it is necessary to specify:

o the target MPG4,
e the local search function, and

e the adjacency oracle.

57

3 Target Triangulation

Let E,, be a rooted MPG4 with vertex set {vy, v2,...,vn}. All rooted MPG4 mentioned hereafter are assumed
to be rooted at {v1,v2,v3}. To avoid the trivial case we assume n > 6. Let d(v) denote the degree of vertex v.
The target triangulation E for n > 6 is a stand holding a gem as

shown in figure 2. It is the unique rooted triangulation with degree M1

sequence:

d(v1) =n—2,d(vz) =d(v3) =d(vs) = --- = d(vp-1) =4,d(vp) =n —2

4 Local Search

In general, given a rooted MPG4 E, # E?, we first build the stand
by reducing d(v2) and d(vs) to 4, and then reduce the degrees of the
vertices in the horizontal ”chain” in the gem to 4, working from right Y2 V3
to left along the ”chain”.

We say that a vertex v has consecutive neighbours Figure 2: Target Triangulation
u1,us, ..., Uy if these neighbours occur in consecutive counter-
clockwise order in the unique planar embedding of the triangulation.
An edge is said to be 1-flippable if and only if it is internal and a
diagonal transformation can be performed on it without destroying the minimum-degree-4 property of the
triangulation. Two edges are said to be 2-flippable if and only if they are internal and a diagonal transform-
ation can be performed on each of them simultaneously without destroying the minimum-degree-4 property
of the triangulation. The following lemmas describe some properties of MPG4, which motivate our Local
Search function.

Lemma 4.1 Let s be a vertexr in a MPG/ such that d(s) > 5. Suppose s has five consecutive neighbours
u1, U2, U3, Us, us Such that uy is external, and uz,us,us are internal. Then either d({uz,us,us}) > 5, or

there erists a vertez t € N2(s) ﬂ?=1 N(u;).

Lemma 4.2 Let s be a vertex in a MPG/ such that d(s) = m > 5. Suppose s has consecutive neighbours
UL, Uz, U3, . -, Um—1,Um SUCh that uy is external, and us,us, ..., Uum—1 are internal. If d(us) =d(ug) =--- =

d(um—2) = 4 and d(um—1) > 5, then either there erists a vertez t € N%(s) ﬂ;"____ll N (uj) such that d(t) > 5,
or (u1,uUm—1) is I-flippable. Further, (s,um—1) is I-flippable.

Lemma 4.3 Let s be a vertex in a MPG/ such that d(s) > 5. Suppose s has four consecutive neighbours
Uy, U2, u3,us such that ug,uz are internal, and d(uz) > 5. Then either (s,us) is I-flippable, or (s,us) is
1-flippable. Further, if (s,uz) is not I-flippable, then d(u;) > 5.

Lemma 4.4 Let s be a vertez in a MPG/ such that d(s) > 5. Suppose s has four consecutive neighbours
U1, U2, U3, us Such that uy is external, us,us,us are internal, and d(us) = d(uz) = 4. Let t # s be the
common neighbour of uj,us,us,us, and d(t) > 5. Then (s,us) and (t,us) are 2-flippable.

%
En
Vi

V3

Figure 3: Illustrating the local search function

58

Before presenting the Local Search function, let us illustrate it with an example. The idea is to compare
first, the degrees of vertices v, and v to their corresponding degrees in the target, and then the degrees of
vertices along the horizontal ”chain” in the gem to their corresponding degrees in the target, starting with
the vertex adjacent to v; and vs, and examine the neighbours of v; in clockwise order.

Figure 3 shows an example with n = 11. E! has d(vs) = 5. Since d(t) < 5, we apply Lemma 4.2 and flip
(v1,u4) to get E2. In E2, d(vs) is still > 4. We can apply Lemmas 4.2 and 4.4, flip (v3,u2) and (2, us) to get
E3. We see that d(s) = 5 in E®. Again we can apply Lemmas 4.2 and 4.4, flip (s,u2) and (¢,u3) and then
reach our target E7;.

Figure 4 shows the pseudo code for the Local Search function LocalSearch. In our notation, deg(v)
denotes d(v), and v[i], u[j] denote vertices v; and u; respectively. Hereafter, "application” of the function
implies the diagonal transformation follows on the returned edge(s).

The next theorem shows that repeated application of the function leads any rooted MPG4 to the target.

Theorem 4.1

i. Edges returned by LocalSearch are either 1-flippable or 2-flippable.

#. Successive application of LocalSearch transforms any rooted MPG4 E,(n > 6 and E, # E}) to the
target MPG4 E,.

Sketch of proof: For part i, we use the lemmas. Whenever two edges are returned, we apply Lemmas
4.2 and 4.4. Whenever (v;,u;), (vi,uj+1), (8,u;) or (s,uj41) is returned, we apply Lemma 4.3. Whenever
(vs, Um—1) OF (U1,Um—1) is returned, we apply Lemma 4.2. In all cases, s in the lemmas will be the vertex
v; or s in LocalSearch. By the lemmas, the returned edges are either 1-flippable or 2-flippable. Hence, we
have shown that application of LocalSearch on any rooted MPG4 always results in another rooted MPG4
(for given n).

For part i for 2 < i < 3, the algorithm reduces d(v;) by one, by returning a 1-flippable edge incident
to v;; or it returns some edge, flipping which leads to another MPG4, on which subsequent application of
LocalSearch returns a 1-flippable edge incident to v;, hence reducing d(v;) by one. We need to show that
the process of reducing d(vs) does not increase d(vz). This can be verified by going through all the cases.

When d(v;) and d(v3) reach 4, the algorithm works on the vertices that are internal neighbours of v; in
clockwise order. We have to show that, when s= the vertex adjacent to v; and vs, and lasts =vs, the process
of reducing d(s) does not increase d(lasts) or d(vz). Again this can be verified by going through all the cases.

By the structure of the target triangulation we defined, the above argument applies to subsequent s’s for
lasts # vs as well, since we can assume that previous lasts’s are erased from the graph and this part will
not be affected by the algorithm anymore. The process stops once the degrees of the vertices match their
counterparts in the target, and so the algorithm is finite. O

5 Adjacency Oracle

Suppose E, has its edges indexed from 1 to 3n — 6, and let €1, e2,€3 be the 3 external edges. The edges are
stored in some ordered edge list E, = {e1,é€2,...,€3n—6}-

Suppose a single diagonal flip is performed on some internal edge e. The new edge e’ is well defined and
need not be specified explicitly. The operation is: flipy(En,e) = En —e+e€’.

We know that not only a single diagonal flip, but two simultaneous diagonal flips can also define adjacency.
Suppose a double diagonal flip is performed. The two edges flipped must be the two pairs of opposite sides of
some quadrangle in the triangulation. Each quadrangle is defined by one internal edge in the triangulation.
Hence for each internal edge in the triangulation, we also consider two pairs of edges. We can define the
adjacency oracle which gives all adjacent rooted MPG4 to a given rooted MPG4 E, as follows:

59

LocalSearch(E,n) // returns one(or two) flippable edge(s) or (-1) if E==target

// reduce deg(v[2]) and deg(v[3]) to 4
i=2; while (deg(v[il)==4 && 1i<=3) i++;
if (i<=3){ Let u[1],ul2],...,ulm] be the m consecutive neighbours of v[i].
u[1] is external, ul[2],...,u[m-1] are internal. // deg(v[i])==m>=5
if (deg(ul[jl)>=5 for some minimal j where 2<=j<(m-1))
{ if (ulj-1],ulj+1]) is not an edge return((v[i],uljI));
else return((v([il,ulj+1]));
}
if (deg(uljl)<5 for all 2<=j<(m-1) && deg(ulm-1])>=5)
{ case (i) of
2: return((v[il,ulm-11));
// cannot return (v[i],u[m-1]) if i==3, otherwise deg(v[2])
// will go up
3: Let t!=v[i] be the common neighbour of u[1],u[2],...,
ulm-1].
if (deg(t)<5) return((u[1],ulm-11));
else return((v[i],ul2]) and (t,u[3]));
}
if (deg(ul[jl)<5 for all 2<=j<=(m-1))
{ Let t!=v[i] be the common neighbour of u[1],u[2],...,ulm].
return((v[il,u[2]) and (t,ul3]1));
3}
}
// build the gem
Let s be the vertex adjacent to v[1] and v[3], lasts be v[3].
while (deg(s)==4 && s!=the vertex adjacent to v[1] and v[2])
{ lasts=s; s=the neighbour of v[1] previous to s in counter-clock-
wise order;
}
if (s==the vertex adjacent to v[1] and v[2]) return (-1); // E==target

Let ul[1]l=v[1], u[2],...,ulm]=lasts be the m consecutive neighbours
of s. // deg(s)==m>=5
if (deg(ul[jl)>=5 for some minimal j where 2<=j<(m-1))
{ if (ulj-1],ulj+1]) is not an edge return((s,uljl));
else return((s,ulj+11));
}
if (deg(u[j]1)<5 for all 2<=j<(m-1) && deg(ulm-1]1)>=5)
{ // cannot return (s,ulm-1]), otherwise deg(lasts) will go up
Let t!=s be the common neighbour of u[1],u[2],...,ulm-1].
if (deg(t)<5) return((ul1],u[m-11));
else return((s,ul2]) and (t,ul3]));
}
if (deg(uljl)<5 for all 2<=j<=(m-1))
{ Let t!=s be the common neighbour of u[i]l,ul2],...,ulm].
return((s,ul2]) and (t,ul31));
b

Figure 4: Pseudo code for the Local Search function

For j =4 to (3n — 6), let e; = (a,b) bound Aabc and Aabd. Define

. . flip; (En, €;) if e; is 1-flippable
Adj1 (En,) { 0 otherwise

. S flip; (Ey,, (a,c)) and flip; (E,, (b,d)) if (a,c) and (b,d) are 2-flippable
Adj2(Bn,j) = { 0 otherwise

.) flip; (Ep, (a,d)) and flip; (En, (b,¢)) if (a,d) and (b, ¢) are 2-flippable
Adjs3(En, j) { 0 otherwise

60

[(n #rooted MPG4 | #rooted MPGb5 | time taken/sec.]| #rooted MPG | time taken/sec. |
4 - - - 1 0
5 - - - 3 .002
6 1 - 0 13 .003
7 3 - 0 68 .010
8 12 - .007 399 .060
9 59 - .037 2,530 .506
10 313 - .255 16,965 4.355
11 1,713 - 1.850 118,668 37.762
12 9,559 1 13.224 857,956 330.423
13 54,189 0 92.120 6,369,883 2911.029
14 311,460 6 638.280 ? ?
15 1,812,281 13 4459.693 ? ?
16 10,661,303 55 30424.496 ? ?
17 63,336,873 189 207669.911 ? ?
Table 1: Results available
6 Results

For brevity the code for the reverse search algorithm is omitted. It is essentially the same as the standard
reverse search procedure given in [2]. We have implemented the algorithm in C using the same data structure
adopted from the program in [1]. Complexity analysis is straightforward as in [1]: the algorithm uses O(n)
space and O(n? - f(n)) time where f(n) is the number of rooted MPG4 on n points. It was tested on a
DEC3000/500 Alpha for 6 < n < 17. For 6 < n < 13, the total number of rooted MPG4 were verified with
the program in [1]. The largest problem solved with n =17 and f(n) = 63,336,873 took 3461 minutes. We
have also added a constraint to our program to produce rooted MPGS5. These results and timings are shown
in table 1.

7 Conclusion and Future Work

We have shown that the graph of rooted MPG4 (given n) is connected under single and double diagonal
transformations. Hence we designed and implemented an efficient algorithm for generating non-isomorphic
rooted MPG4 using reverse search. It is possible to parallelize our program for better run time and we may
want to do this to obtain results for larger n. Hurtado and Noy [5] showed the graph of rooted triangulations is
hamiltonian. It would be interesting to see if the same is true for the graph of rooted MPG4. Finally, we found
that the graph of rooted MPG5 (given n) is not connected under single and double diagonal transformations
alone. However, it might be connected under single, double and some triple diagonal transformations (in fact
the graph of rooted MPG5 for n = 14 verifies this) and this deserves further investigation.

References

[1] D. Avis. Generating rooted triangulations without repetitions. Technical Report SOCS-94.2, McGill
University, 1994. To appear in Algorithmica.

[2] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied M athematics, 6:21-46, 1996.

[3] A. Deza, K. Fukuda, and V. Rosta. Wagner’s theorem and combinatorial enumeration of 3-polytopes.
Combinatorial Geometry B-271, Department of Information Sciences, Tokyo Institute of Technology,
October 1993.

[4] S. Even. Graph Algorithms. Computer Science Press, 1979.

[5] F. Hurtado and M. Noy. The graph of triangulations of a convex polygon. Technical Report MA2-IR-94-
13, Departament de Matematica Aplicada II, Universitat Politecnica de Catalunya, May 1994.

[6] O. Ore. The Four-Color Problem. Academic Press, 1967.

61

