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Abstract

In automation of geometric modelling in industry, mod-
els of solids are often converted to collections of oriented
triangles. Each triangle is described by the coordinates of
three vertices and an outward normal vector. The topol-
ogy is discarded. For many applications it is useful to
reconstruct the topology of the boundary of a real solid
as an oriented two-manifold. This poses three types of
difficulties. First because of the finite precision, the coor-
dinates of matching vertices in two triangles may not be
equal. If a tolerance is assumed that is small compared to
the shortest triangle edge, coordinates can be matched. A
more serious problem is that many CAD systems produce
collections of triangles that do not match. They often con-
tain topological defects such as non-manifold edges. An
algorithm is presented that has successfully transformed
non-manifold edges into oriented two manifolds for most
cases encountered to date.

1. Introduction

Geometric modeling technology, which has developed
rapidly since 1970, plays a central role in industrial
CAD[5]. Solid modelers have complex data struc-
tures that are usually proprietary to the computer
code used to generate them and therefore are secret.
There complexity and secrecy makes it difficult to ex-
change data between different solid modelers. One of
the easiest ways to overcome the difficulties of data
exchange between solid modelers is to create a sim-
ple boundary representation (BRep) of a tessellation
that covers the surface of the solid with planar tri-
angles. In this paper, an STL tessellation of a BRep
approximates a partition of a 2-manifold into trian-
gles. It has a simple data structure. Each triangle
is described by an outward normal and the coordi-
nates of three ordered points. Some industrial and
research applications begin their solid modeling with
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such files that contain the information describing the
boundary of the solid model. Typical industrial tes-
sellations can have several hundreds of thousands of
triangles.

One difficulty that arises with this representation is
that most current solid models do not create topo-
logically correct tessellations. In order to use these
tessellations as the definition of the geometry of a
real solid part for other processes, such as Finite El-
ement Method (FEM) mesh generation, it may be
necessary to have a mathematically correct oriented
2-manifold. In such cases it is necessary to correct the
topological defects in the tessellation of solid models
in these files. The automation of solid modeling from
initial BRep to the final meshing of the solid model
continues to be an important research goal.

Many research papers discuss how to build correct,
complete and efficient BRep models[5][6]. However,
because the solid modeling itself is complicated or
because the defects of tessellation can vary in many
ways, few papers study the issue of detecting and
correcting topological defects. One of our aims is to
help to fill this gap. The major areas of research
covered in this paper include identifying topological
defects, classifying topological defects and correcting
topological defects automatically if feasible and with
the help of a graphical user interface (GUI) when
necessary. However, due to the length of the paper,
only one of the most difficult aspects: resolving high
degree non-manifold edges is discussed in detail.

2. Two-Manifold BRep

There are two mathematical theories that define the
modeling space for solid modeling: point-set topol-
ogy and algebraic topology(3][4]. Point-set topol-
ogy stresses the three-dimensional solidity of a math-
ematical object while the algebraic topology stresses
the bounding surface of a mathematical object.




In point-set topology, a solid is defined as a bounded,
closed subset of E3. The solid should remain invari-
ant under a rigid transformation such as translation
or rotation. All shapes that can be formed from
stretching an infinitely elastic sphere without tearing
or ripping form a topologically equivalent class. The
topological transformation gives a hint that a solid
model with some topological defects can be corrected
mainly by topological information.

A bounded regular set is termed an r-set. This defini-
tion of regularization describes the interior of a point
set, i.e., forms an open set, then covers it completely
with a tight skin. This means that it will not contain
isolated points, isolated lines, isolated faces or miss-
ing points, lines or faces. The boundary should also
be sufficiently smooth, e.g., Lipschitz, in order to be
modeled. Real solids do have quite smooth bound-
aries. Manifold (2-manifold) BRep based solid mod-
eling topology representations are the basis of some
of the most popular forms of solid modeling represen-
tations used today.

A 2-manifold M is a topological space where every
point has a neighborhood topologically equivalent to
an open disk of E?, which is the same as saying that
every point has a neighborhood which is homeomor-
phic to R2. The BRep model in this paper is defined
to be a 2-manifold with triangular tessellation.
There is an inherent theoretical mismatch between
r-set models and 2-manifold models: not all r-sets
are realizations of some 2-manifolds. The problem
with such objects is that a surface can “touch” it-
self at a point or on a curve segment. The neigh-
borhoods of such points are not homeomorphic to an
open disk in E2. These problems can be resolved
by separating the touching surfaces. This is accom-
plished by duplicating the nodes with the same co-
ordinates but a different node identity. Hence, the
object would be represented as the rigid combina-
tion of two or more components that are separated
topologically but still touch each other at a geomet-
rical point. There are 2-manifolds that do not have
physical counterparts in E3, i.e., that cannot be con-
structed in three-dimensional space at all, and are
hence not the boundaries of any r-set. The Klein bot-
tle is an example. Also a correct 2-manifold should
obey Mabius’ Rule that requires the faces of the BRep
to be consistently oriented in E3.

Another characteristic of a BRep of a solid is the Eu-
ler characteristic. It states that: for a surface S of an
r-set, the sum v — e + f, where v, e, f stand for the
numbers of vertices, edges and faces respectively, is
a constant independent of the manner in which the
surface S is partitioned and independent of any oper-
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ation on the surface, provided that the surfaces before
and after the operation are topologically equivalent.
Usually this does not help in correcting topological
defects.

Based on the discussion above, we can defined a topo-
logically correct 2-manifold BRep model using planar
triangles to be one that satisfies:

1. Each edge’s degree is two, which means that
each edge is only adjacent to two polygon
faces.

2. Each vertex has only one open disk.

3. The face normal of each polygon is directed
outward from the r-set.

4. A solid could be a union of one or more 2-
manifolds.

5. Faces of the model do not intersect each other
except at common vertices or edges.

3. Identification and Classification of
Topological Defects

It is assumed that topological defects in tessellations
can be arbitrarily complex. Therefore our objective
is to correct automatically those defects that occur
most frequently in a set of real STL files that have
been provided by industry([2].

As an r-set can be a union of several sub-r-sets, the
checking can be carried out on each separate set of
connected face elements, each of which is adjacent to
other face elements in the same set at least at one
edge. The sets of connected triangles can be easily
found by face flood filling[1]. Geometric information
can also be calculated for each separate r-set, such as
the bounding-box, the volume of the set, the average
area of the face, the average edge length for certain
sets of edges. All the information including that per-
taining to the topological defects will be used to cor-
rect the topological defects in the BRep. The GUI
should be used to check for connections between sep-
arate sets since global information about the BRep is
needed. If the BRep is reasonably behaved, a single
r-set will be one set of connected face elements. Our
attention will focus on checking each set of connected
face elements.

It is possible to identify most topological defects by
checking if every edge in the model is degree two (the
degree of an edge in this paper represents the number
of faces that are adjacent to this edge). This test will
detect objects with missing surfaces or that are joined
together. Missing surfaces will introduce open loops
edges which are odd degree edges caused by missing
faces adjacent to these edges. The open loop edges




form loops and the loops can further form loops. In
most cases, open loop edges are degree one edges.
The open loop edges can be fixed by separating open
loops into single open loops and adding the missing
faces or by merging the nodes on each of the single
open loops. High degree edges are introduced by
touching of the surfaces at the edges or by dangling
undesired faces or bodies at these edges. They can
be further classified into two categories: odd high
degree edges and even high degree edges. High degree
edges cannot be simply resolved by duplicating edges
since it is also necessary to check which faces should
be adjacent to which edges. Otherwise the correct
adjacency of the faces may not be guaranteed which
could exacerbate face intersection or even result in
a Klein Bottle, which has no physical counterpart in
3D.

The criteria that each edge should be adjacent to two
faces will miss at least three kinds of topological de-
fects: wrong orientation edges exist when there
are some patches — sets of faces — that are oriented
differently, such that for each pair of faces along the
boundaries of these sets, one is facing outward while
the other is facing inward from the solid body. This
problem can be identified by checking the paired faces
adjacent to each edge in a tessellation to see if they
have opposite orientation along the edge. For a cor-
rect edge, the edge adjacent faces should have the
opposite orientation relative to the edge; while for an
incorrect edge, the edge adjacent faces have the same
orientation with respect to the edge. Wrong orien-
tation edges will form loops, so that the incorrectly
oriented faces can be collected by face flood filling
bounded by the loops.

The second case of topologically defects that cannot
be detected using the criteria above is the one where
the surfaces touch at points. Often, the points that
are touching can be separated without effort: repro-
duce the joining nodes two or more times and sepa-
rate them along with their open disks such that after
separation, each node will only have one open disk.
For some cases, this kind of topological defect will not
have any negative impact on other processes such as
mesh generation which is based on the assumption
that the surface of the part is topologically correct.

The third and perhaps the worst type of topological
defect that cannot be detected by the above criteria
above is exemplified by the Klein Bottle. This kind
of topological defect cannot be corrected unless the
associated geometric information is also corrected.
This involves the very costly check of face intersection
which is usually several orders of magnitude more ex-
pensive than pure topological checking[1]. It may be
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necessary for the user to rebuild the local geometry
and topology in the GUI. The detection of the in-
tersecting triangles is necessary before the user can
correct the defects.

From the above analysis, we can see that the topolog-
ical defects can be identified mainly by identifying the
non-manifold edges in the part. If the part passes this
test, further tests will include checking the number of
open disks for each vertex on the part and face inter-
sections in the tessellation. There are maybe other
defects, such as duplicate faces and ill-shaped faces,
such as two nodes in a triangle element have the same
coordinates.

4. Resolving High Degree
Non-Manifold Edges

Fixing open loops involves more geometric informa-
tion and can include high degree edges[l]. There-
fore, a quite logical and practical strategy is to re-
solve the high degree edges first which will leave only
non-manifold edges of degree one to be fixed later.
Resolving the high degree edges will be carried out
sequentially in each set of connected non-manifold
edges. From a topological point of view, there is suf-
ficient information in each set of non-manifold edges
and their connected face elements to resolve the high
degree edges for a real solid.

The main steps to resolve the high degree edges in-
clude:

1. Finding all of the non-manifold edges in the
part;

2. Do edge flood filling by the adjacency of con-

necting nodes to find connected sets of non-
manifold edges;

3. Checking each set of connected non-manifold
edges to see if there are high degree non-
manifold edges in the set;

. If there are, resolve the high degree edges in
the set.

This divides the tasks into manageable portions and
also makes recursive operations more efficient. As
in some cases, some of the geometric information or
topological information is missing or incorrect, resolv-
ing the high degree edges in a set of connected non-
manifold edges is one of the most difficult challenges
in this research. Solving this creates non-manifold
degree one edges which can be much easier to fix. All
the available topological and geometric information
may have to be used to perform this task correctly.
Often, cases of high degree edges are very complex.
The degrees of high degree edges can be odd or even.




In the odd high degree cases, there must exist miss-
ing or additional face elements adjacent to the edge.
In the even degree cases, there might also exist miss-
ing or additional faces, but the number of missing
or additional faces should be an even number, which
makes these cases rare. The high degree edges may
not all be separate edges. They can form links, loops,
trees and more general graphs. ’

G

Figure 1: High degree edges can form links, loops,
trees and more general graphs. The thickness repre-
sents the edge degrees.

To resolve a high degree edge will depend strongly
upon the local topological and geometric informa-
tion. In a valid tessellation, both kinds of informa-
tion are consistent. In a invalid tessellation, one or
both kinds of information might be incorrect or in-
complete. In the following steps, a complex prob-
lem is broken down into sub-problems and each sub-
problem is dealt with separately.

For a connected set of connected non-manifold edges
that include high degree edges, all the high degree
edges can be collected. As the degree of a non-
manifold edge is directly associated with the number
of open disks that its end nodes have, it can be seen
that for a high degree edge, each of its end nodes will
have at least two open disks. To resolve a high degree
edge, either or both of the end nodes should be sepa-
rated from the original nodes. In order to separate a
node from the original node, the new node must find
all the face elements in its open disk. Separating the
face elements without regard for this requirement can
result in an incorrect topology (see Figure 2).

—tB |

Figure 2: An incorrectly separated open disk.

As it has been discussed earlier, the high degree edges
will form links, loops, trees or more general graphs
and they cut the open disks into several pieces. It is
easier to solve if the separation begins at the ends of
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branches of a tree (graph) of high degree edges, but it
is also possible to begin with any node on high degree
edges.

.
yod-foo

Figure 3: Separating open disks of the high degree
edges.

For a set of non-manifold edges with high degree
edges, the high degree edges in the set can be re-
solved recursively. This can begin by separating the
open disks from the easiest node — the node that has
the fewest high degree edges in the set such that the
open disks of this node are being cut the least by the
high degree edges. Often the node will be connected
to only one high degree edge. As the separation pro-
ceeds, the number of high degree edges in the set
and also the degrees of the high degree edges will de-
cline. At the same time, the data structure of the set
of non-manifold edges and the data structure of the
part should be updated. When all the high degree
edges in the set have been resolved the processing of
this set will terminate.

Now the key problem is to resolve a node with sev-
eral open disks. How to find the complete open disks
for the node is the main problem, since as soon as
a complete open disk is extracted from the face ele-
ments of the node, a new node can be generated with
the same coordinates (but with a different topologi-
cal neighborhood) and then the open disk with the
new node can be separated from the original node.
By doing so, the related high degree edges will re-
duce their degrees by one ( see Figure 3). Since the
high degree edges will cut the open disks into several
pieces, a face element flood filling by edge adjacency
but not adjacency of the non-manifold edge, in the
connected set of non-degree two non-manifold edges
to form connected sets of elements called necklaces
of the node. These necklaces are parts of open disks
or complete open disks bounded by the high degree
edges (see Figure 4).

In Figure 4, let’s assume that open disk abcd be-
longs to a part of a surface, open disk efgh belongs
to another part of a surface, face aoe and face goi are
topological defects. Because of face aoe and face goi,
edge ao, eo and ggo are degree three edges, edge gi
and edge io are degree one edges. The high degrees




Figure 4: Combining necklaces to form open disks.

eo and go cut open disk efgh into necklace efg and
ghe while on the other hand, the even high degree
edge ao cuts the open disk abcd. Open disk abcd
is still complete. It can be separated without effort.
Separating open disk abcd can simplify the situation:
after open disk abcd has been separated, face aoe and
goi can be considered as dangling faces, they can be
removed easily. In some complicated cases, no open
disks can be extracted easily. For example, if there
is a topological defect face goc, then open disk abcd
is separated into two necklaces. The following steps
can combine the paired faces to form complete open
disks.

So far, no geometric information has been used to re-
solve the high degree edges. From the definition of
a necklace we can know that its boundaries are high
degree non-manifold edges. If the two boundaries of a
necklace are actually one high degree edge, the neck-
lace is a complete open disk and can be separated. In
most cases, the necklaces are not complete open disks
at all. In such cases, two or more necklaces should
be connected to form a complete open disk. Then
one must find the correct pair of face elements on the
boundaries of the necklaces.

The problem of pairing can be solved by searching for
the face element that will form a valid solid with an-
other face element, both of which are adjacent to the
boundary high degree edge. Geometric information
plays a very important role in this case.

Figure 5: Radially ordering the faces around a hight
degree edge and then separate the pairs.

Figure 5 shows the pairing process. To combine the
necklaces of a node, first the high degree edges ad-
jacent to the node are found, and then the triangles
around each of these high degree edges will be radi-
ally ordered according to their face normals and their
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node orientations. If the ordering result is a circular
list (+,-,+,-,+,, -, +, -) then the order is defined
to be valid (see Figure 5). If the order is valid, then
each triangle can find its paired triangle by searching
in the opposite direction of its face normal and the
necklaces can be combined in pairs. If the two face
elements in pair are in one necklace already, they are
already combined. Otherwise the necklaces in which
the paired face elements are separated will be com-
bined into one necklace. The same process can con-
tinue until one complete open disk has been formed.
In cases where some face elements are missing, (which
means in Figure 5 some faces would be missing,) the
ordering results will not be complete, but valid pairs
might still be found provided there are no face ele-
ments inside the solid body of other paired face el-
ements. The ordering results will be combined with
the local topological information to judge if the pair-
ing is valid. If the pairing is valid, the paired face
elements can be combined to further form complete
open disks. In our research, no cases have not been re-
solved by this procedure. Often, success at one node
can lead to resolving the whole set of connected high
degree edges adjacent to this node.

If high degree edges remains that cannot be resolved
by the above procedure, the set of non-manifold edges
that contains these high degree edges will be sent to
the GUI for correction by the user. After the high
degree non-manifold edges have been resolved, the
remaining non-manifold edges are much easier to be

fixed[1].

5. Conclusions

Based on the results of the study of identifying and
correcting topological defects described in this paper,
the following conclusions can be drawn:

e The topological defects can be identified and
classified by examination of non-manifold edges
and vertices in the solid models and the intersec-
tions of face elements in the tessellation.

The topological defects can be classified into
non-manifold vertices, open loops, high degree
edges, wrong orientation edges and intersecting
face elements.

Most of the topological defects can be corrected
by a systematic approach which can include sev-
eral clearly isolated components.

A GUI can be very useful to enable the user to
check and correct topological defects that cannot
be corrected automatically.




The method described in this paper mainly depends
on topological and geometric information on the
boundary of solid models. During the course of study
it has been found that certain aspects of topological
defects which maybe difficult to correct by the algo-
rithms given in this paper may be easier to correct by
meshing the solid model first which may supply in-
formation not only about the topology of the bound-
ary but also the topology of the volume of the solid
model. Further research should be carried out on this
aspect. As the scope of this paper dealt mainly with
topological defects, geometric defects such as remov-
ing zero area faces and improving the tessellation are
not discussed in depth in this paper.
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