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1 Introduction

In the field of visibility research, the Reconstruction problem rebuilds an (unknown) object from
(primarily) visibility information. In the literature, various objects have been considered (e.g.,
points, line segments, polygons) and a variety of visibility models suggested [Eve90] [O’R87] [Wis85].
In general, visibility information alone is not sufficient to reconstruct an object and frequently extra
information is provided [CL91] [Wis94].

This paper presents an algorithm that reconstructs an (unknown) orthogonal polygon in O(nlogn)
time from pure visibility information - the “stab visibilities” of the vertices of the polygon. Each
vertex v of a simple polygon P has two stabs, namely the first side of P encountered by extending
the two sides of P at v. For an orthogonal polygon (aligned with the X and Y axes) the stabs are
horizontal and vertical. Both interior and exterior visibilities are provided - “co” will be used to
denote a stab that encounters no side of P.

Given an orthogonal polygon P, the construction of this stab information can be computed in
O(nlogn) time via a straightforward line sweep algorithm. The reconstruction problem (OPR)
considered here is to obtain an orthogonal polygon that is consistent with given stab information.
The sides of the polygon are specified in order, and referred to as the Hamiltonian cycle. See figure
1 for an example of the given input (stabs along each side) and resulting reconstructed polygon.
We assume that the stab information represents a simple orthogonal polygon with n > 4 vertices
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Figure 1: An Example of the OPR Problem
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and that no pair of sides are collinear. (Collinearities can be accommodated, but at the expense of
a more detailed exposition[Jac96].)

The first stage of the algorithm identifies each vertex as either CONVEX or REFLEX. Only the
horizontal stab information is required, so stab(v) will be used to denote the horizontal stab at v.
(This stage is equivalent to determining whether the stab is interior or exterior to the polygon.)

The second stage of the algorithm computes two orders (for the X and Y dimensions), based
on the stabbing and convexity information, and subsequently assigns (integer) coordinates to the
vertices, yielding an orthogonal polygon consistent with the given input.

2 Determining Convexity

In the final reconstructed polygon P, the horizontal stabs must partition the plane into a collection
of rectangles - see figure 2. Depending on how the stabs hit the sides of the polygon, twelve different

Figure 2: A Reconstructed Orthogonal Polygon with Horizontal Stabs

types of rectangles, as enumerated in figure 3, are possible, ignoring horizontal and vertically
symmetric situations. It is assumed that those rectangles with stabs to infinity are completed by a
pseudo side at infinity. This stage of the algorithm organizes the (horizontal) stabs into rectangles,
and based on the type, identifies the convexity of the vertices.

Yy 3 o L A B

Type 5

Type 1 Type 2 Type 3 Type 4 Type 6
kel T/ ——ee--- z' ’é_L i _;| S S
t__-] [; ;l T T TT 777
Type 7 Type 8 Type 9 Type 10 Type 11 Type 12

Figure 3: The Twelve Possible Horizontal Rectangles

Notice that every stab is part of exactly two rectangles, one above and one below it. For the
previously stated assumption of no collinear sides, there exists a unique top most side and a unique
bottom most side, each of which partially bound degenerate rectangles. These will be called type
0 rectangles and are easily identifiable.

Lemma 1 Aside from the two type 0 rectangles, rectangles of types 1 through 12 are the only
possible rectangles created from the sides of an orthogonal polygon and its horizontal stabs.

Proof: The proof to this lemma is a combinatorial proof that considers the number of corners
of the rectangles that correspond to the vertices of the polygon. See [Jac96] for details. O

Identification of each of the types 0O through 11 rectangles requires checking constant time
conditions. The list of conditions is lengthy, but straightforward and is omitted; two examples of
the conditions are given below:
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e A type 1 rectangle is identified when the horizontal stab of one vertex 4 and its neighbour on
the Hamiltonian cycle ¢ + 1 are both to the same side. Thus ¢ and 7 + 1 must have the same
convexity.

e A type 3 rectangle is identified when the stab of one vertex ¢ and the stab of vertex ¢ + 3 are
to the same side, and vertices 2 + 1 and 7 + 2 form a vertical side. Thus, vertex 7 + 3 must
have the same convexity as ¢, but ¢ + 1 and 7 + 2 must have the opposite convexity of z.

A type 12 rectangle is detectable when two pairs of vertices have common stabs. (That is,
stab[i] = stablj + 1] and stabli + 1] = stab[j], assuming vertices (7 and ¢+ 1) and (j and j + 1)
form horizontal sides). Detecting this type of rectangle will require examining all horizontal stabs
to each vertical side. Since it is possible that O(n) stabs could hit one side, for example, it might
appear that this operation could take O(n?) time. However, in section 2.2, a data structure is
presented that reduces the overall time needed to identify all type 12 rectangles to O(nlogn) time
in total.

2.1 Classify and Identify Rectangles: Types 0 to 11

This part of the algorithm walks along the Hamiltonian cycle of the polygon, checking each hori-
zontal stab for inclusion as part of any type 0 through 11 rectangles. For each vertex, v, append the
other vertices on the same rectangle to either its same[v] or opposite[v] set, and count the number
of rectangles to which it has been assigned.

e Initialize: For each vertex v, in Hamiltonian cycle order do:

1. number_of -rectangles[v] := 0.
2. initialize same[v] to the empty set.

3. initialize opposite[v] to the empty set.
o Classify/Identify: For each vertex, v, in Hamiltonian cycle order do:

— if conditions 0 to 11 of section 2 are satisfied with vertex wv:

x For every pair of vertices, j and k, on the rectangle
1. increment number_of _rectangles(j]
2. either INSERT(j, samelk]) or INSERT (j, opposite[k])
appropriately’

Analysis: O(n) time and space is used. Note that every vertex is part of exactly three horizontal
rectangles, each of which contains from two to four vertices of the polygon, the same and opposite
sets for each vertex will together contain no more than twelve vertices.

Now, label any vertex that has been assigned to three rectangles as classified and the rest as
unclassified. The next section will use this classified/unclassified labelling to identify the type 12
rectangles.

2.2 Identify Rectangles: Type 12

A type 12 rectangle could be on either the inside or the outside of the polygon; there could be O(n)
type 12 rectangles. Any vertex that is now unclassified must be part of some type 12 rectangle.
The difficulty is identifying which other stabs are also part of this same rectangle; refer to figure
4. The stab s, that is on the other end of the horizontal side from s; can be identified in constant

!This is easily determined from figure 3
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Figure 4: A Type 12 Rectangle

time, simply by looking at the stab of the next vertex on the Hamiltonian cycle. However, the two
stabs s3 and s4 of the same rectangle are more difficult to find.

For every adjacent pair of type 12 vertices (e.g., s1 s2 in figure 4) one vertex of the pair is
included in a binary search tree of the vertical side stabbed by the other. When inserting into these
binary trees, a vertex to be inserted that already exists in the tree was placed there by the other
pair of type 12 vertices that stabbed the same vertical sides. This condition indicates that all four
vertices of a type 12 rectangle have been identified.

o Initialize: For each vertical side, s, in Hamiltonian cycle order do:

— unclassified-count[s] := 0.

— initialize binary_tree[s] to empty.
e Count stabs: For each vertex, v, in Hamiltonian cycle order do:

— If (number-of -rectangles[v] = 2 ) increment unclassi fied_count|stab[v]).
o Create Trees: For each vertex, v, in Hamiltonian cycle order do:

— if (number_of -rectangles[v] = 2) AND (number_of_rectangles[v + 1] = 2)

* if (unclassified_count[stab[v]] < unclassified_count[stablv + 1]])
- least_stabbed := stab[v] ; most_stabbed := stablv + 1]

* else
- least_stabbed := stab[v + 1] ; most_stabbed := stab[v]

— if (M EM BER(most_stabbed, binary_tree[least_stabbed)))

x /* a type 12 rectangle has been found. */

* For every pair of vertices, j and k, on the rectangle:
INSERT(j, samelk])

+ DELETE(most_stabbed, binary_tree[v])

— else INSERT (most_stabbed, binary_tree[least_stabbed)).

Analysis: The initialize and count stabs loops are each O(n) loops. The create trees loop is an
O(nlogn) loop. So, the overall time needed by this part of the algorithm is O(nlogn). However the
space required here is only O(n), since the number of entries in all the binary trees never exceeds
n. .

2.3 Determine Convexity of Vertices

This stage of the algorithm starts with any vertex, v, that has a stab to infinity, marks it as
CONVEX, and initializes a queue (called to_be_done) with this vertex. Then a loop is created
that dequeues a vertex, v, from the front of the queue, marks the vertices in same[v]| as the same
convexity as v, and those in opposite[v] as opposite to v. For each of these vertices, if they were not
previously marked, enqueue them to the back of the queue. The loop continues until the to_be_done
queue is empty. The algorithm is straightforward and the pseudo-code is omitted.
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Analysis: Each vertex is put onto the queue once, and pulled off once and a constant amount
of work is done for each vertex. Therefore, this stage of the algorithm uses O(n) time.

Thus, the time used to determine whether each vertex of an orthogonal polygon of n vertices
is CONVEX or REFLEX is dominated by the O(n logn) needed to identify the type 12 rectangles.
The space requirement is only O(n).

3 Layout Algorithm

In this section, an efficient algorithm is presented to reconstruct an orthogonal polygon from its
stabs and Hamiltonian cycle, after the convexity of the vertices is established. This algorithm
creates two lists, representing the relationships between the z and y coordinates of all vertices.
One list {Zmin,..-Tmaz } represents the z coordinates of each of the vertical sides, the other list
{Ymins ---Ymaz } TEPresents the y coordinates of the horizontal sides. The lists are not unique since it
is not possible to determine the relationships between the stabs on opposite sides of any boundary
segment.

1. Find the four segments with both horizontal and vertical stabs to infinity. The two vertical
ones must be located at zpin, = 1 and Zpyern/2, while the two horizontal ones must be at
Ymin = 1 and Ymee = n/2. Completion of this step requires O(n) time.

2. The segment that runs horizontally along Y, is laid out from right to left. Call this a left
segment. The next segment on the Hamiltonian cycle, a vertical segment, must be an up
segment, and the corner between the two must be a convex corner.

Name the sides of the polygon hy, vi, hg, v, ... hpja, Un/o along the Hamiltonian cycle.
For a horizontal (respectively vertical) segment, define its predecessor segment to be the
horizontal (respectively vertical) segment immediately before it on the Hamiltonian cycle.
(h;’s predecessor is h;_1, and v;’s predecessor is vj—1.) On any segment, vertical or horizontal,
define its two preceding vertices to be the two vertices between h; and h;_; or between
v; and v;_1. Figure 5 shows a horizontal segment and a vertical segment and their respective
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Figure 5: Predecessor Segments and Preceding Vertices

predecessor segments. In each case, vertices z and y are the preceding vertices to the segment.

For each of the remaining segments, in the cycle, if the preceding vertices have the same
convexity, the segment must be opposite its predecessor segment, in the same dimension. If
the preceding vertices have opposite convexity, the segment is the same as its predecessor
segment, in the same dimension. In this way, assign up/down, left/right to each segment of
the polygon. Again, this step uses a total of O(n) time and space.

3. Create two digraphs, X and Y (representing the two partial orders of the sides of P), with
a node in the X graph for each vertical side, and a node in the Y graph for each horizontal
side. Add arcs as follows:

e On the X graph, direct arcs from the node corresponding to the z,,;, side to every other
node, and from all nodes to the node corresponding the z,,q; side.
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e For every right (respectively left) segment in the polygon, put an arc in the X digraph
from the node corresponding to the side containing the first (respectively second) end-
point to the node corresponding to the side containing the second (respectively first)
endpoint.

e For every stab to a right (respectively left) segment put an arc from the node corre-
sponding to the side containing the first (respectively second) endpoint of the stabbed
segment, to the node corresponding to the side containing the endpoints of the stabbing
segment, and another from the node corresponding to the side containing the endpoints
of the stabbing segment to the node corresponding to the side containing the second
(respectively first) endpoint of the stabbed segment.

The X digraph contains less than 5n/2 — 2 = O(n) arcs. The arcs for the Y digraph are
created in a similar fashion, substituting up for right and down for left. Creating the two
digraphs uses a total of O(n) time and space.

4. Topologically sort each digraph to order the nodes from minimum to maximum in O(n) time.

5. Assign z and y integer track numbers (unique integers chosen from the range [1..n/2]) to the
nodes indexed according to the previous topological sorts. Follow through the Hamiltonian
cycle laying each vertex on its respective tracks, putting a segment between each pair of
consecutive vertices. The resulting orthogonal polygon respects the given Hamiltonian cycle
and stabs and has no collinear sides. This step, also uses O(n) time.

Thus the layout algorithm uses O(n) time and space.

4 Conclusion

Overall,

the algorithm reconstructs an orthogonal polygon in O(nlogn) time and O(n) space. An

interesting open problem is to reduce the time to classify type 12 rectangles (and hence the overall
algorithm) to O(n), or alternately to show a lower bound of Q(nlogn).
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