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1 Introduction

In this paper we deal with the random generation of
simple polygons on a given set of points’: Ideally,
given a set S = {s1,...,8,} of n points, we would
like to generate a simple polygon P at random with
a uniform distribution. In this context, a uniformly
random polygon on S is a polygon which is generated
with probability % if there exist k¥ simple polygons
on S in total. Since no polynomial-time solution is
known for the uniformly random generation of sim-
ple polygons, we focus on heuristics that offer a good
time complexity and still generate a rich variety of
different polygons.

Besides being a topic of interest of its own, the
generation of random polygons has two main areas of
application: a) testing the correctness and b) evalu-
ating the CPU-time consumption of algorithms that
operate on polygons. Ideally, one would like to apply
an algorithm on data of practical relevance. How-
ever, it often is next to impossible to obtain enough
practically relevant inputs. Then the second-best
choice is to run an algorithm for a reasonably large
number of random inputs.

Recently, the generation of random geometric ob-
jects has received some attention by researchers.
For example, Epstein [Eps92] studied the uni-
formly random generation of triangulations. Zhu et
al. [ZSSM96] presented an algorithm for generating
z-monotone polygons on a given set of vertices uni-
formly at random. A heuristic for the generation of
simple polygons was investigated by O’Rourke and
Virmani [OV91]. Note, however, that their algo-
rithm moves the vertices while creating a polygon.

In Section 2, we study the following five heuristics
for the random generation of simple polygons:

Steady Growth, an incremental algorithm adding
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one point after the other;

Space Partitioning, which is a divide and conquer
algorithm;

Permute & Reject, which creates random permu-
tations (polygons) until a simple polygon is encoun-
tered;

2-opt Moves, which generates a random (non-
simple) polygon and repairs the deficiencies; and

Incremental Construction & Backtracking, which
tries to minimize backtracking by eliminating dead
search trees.

All these algorithms have been implemented and
subjected to extensive testing In Section 3, we report
and analyze the results obtained.

In addition, we study Star Universe which is an al-
gorithm for the enumeration of all star-shaped poly-
gons on a given point set. Star Universe is compared
to a fast heuristic, Quick Star.

Throughout this paper we assume that the ver-
tices v1,...,v, of an n-gon P are specified in coun-
terclockwise (CCW) order. A point of the input set?
S is denoted by s, whereas p stands for an arbitrary
point in the plane. In our algorithms, P; denotes
the polygon obtained after the execution of phases 1
through i of the algorithm. For a set Q, we denote
its convex hull by CH(Q). We let £(p;,p2) stand for
a line through p;,ps, and the restriction to the line
segment is denoted by p1p2.

2 Algorithms
2.1 Star-Shaped Polygons

Star Universe We start with explaining how to
enumerate all star-shaped polygons on S. Obviously,
a star-shaped polygon P is fixed once its kernel has
been specified: For every point p that lies within
the kernel, the polygon’s vertices appear in sorted
order around p. Also, this order is identical for every
point interior to the kernel. Therefore, the kernels

2For the sake of descriptional simplicity, we assume that
S is in general position.
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of two distinct star-shaped polygons share at most
one edge, and the set of all kernels forms a valid
partition of CH(S).

Necessarily, the arrangement induced by all lines
{(si,s;), where 1 < ¢ < j < n, contains all the
kernels. In general, several adjacent cells of the ar-
rangement will belong to one kernel. This arrange-
ment contains at most O(n*) cells and it can be com-
puted in O(n*). All the kernels can be constructed
from the arrangement in time linear in its size by
the following depth-first search:

1. Choose one cell and mark it as visited.

2. Create the star-shaped polygon P defined by this
“active” cell.

3. For each edge e on the boundary of the active cell,
do the following: If the neighboring cell bounded by
e is part of the same kernel, then check its edges
using P. Otherwise, (i.e., if the neighboring cell be-
longs to another kernel) invert the order of the ver-
tices that lie on the supporting line of e, and proceed
with this other cell (and the modified polygon).

Note that the neighboring cell belongs to the same
kernel if and only if the two vertices defining e do
not appear in consecutive order in P.

Since the method outlined above consumes O(n*)
space® independent of the actual number of star-
shaped polygons, we also investigated the following
output-sensitive method dubbed Star Universe: For
each line £(s;, sj), we compute the intersections with
all other lines (defined by pairs of points of S) and
sort them according to their intersection parame-
ters®. (We can restrict £(s;, s;) to the portion that
lies within CH(S).) For each intersection point p
we keep track of the line £ which generated it. For
the first® star-shaped polygon P, we compute the
midpoint of the first two intersections and sort the
points of S around this midpoint. Then we process
each intersection point p, starting with the second
one, as follows: If the line ¢ associated with p co-
incides with an edge of P then we swap the points
defining £, thus updating P. Otherwise, we skip p.

Note that polygons may be encountered more
than once during the execution of this algorithm.
Thus, we have to keep track of all the polygons
generated so far, which can be done in more than
one way (depending on the desired trade-off between
time and space complexity).

3If all k resulting polygons are to be stored, the space
complexity goes up to O(n* +n - k).

4].e., sort them according to their z-coordinate (or accord-
ing to their y-coordinate if the line is vertical).

5Note that if one of the edges of P coincides with £, we
actually get two polygons.

Star Universe can be implemented with a time
complexity of O(n%logn) as opposed to O(n*) for
the previous algorithm. However, the space require-
ment is reduced from O(n* +n - k) to O(n® + n - k)
space®, where k denotes the number of star-shaped
polygons to be stored. (See Section 3 for experimen-
tal results on k.)

Quick Star Every point p which lies within C#(S)
defines a star-shaped polygon. Therefore, the follow-
ing simple method dubbed Quick Star generates ev-
ery possible star-shaped polygon with positive prob-
ability: Choose a random point p within CH(S), and
sort the points of S around p.

We use a rejection method in order to generate
a point within CH(S) with uniform distribution:
Choose a point within the bounding box of CH(S),
until one which actually lies within C#(S) is found.

2.2 Simple Polygons

Steady Growth As initialization, Steady Growth
randomly selects three points s, s2,53 € S such that
no other point of S lies within CH({s1, s2, s3}). Let
81 := S\ {s1, 82, 83}. During the i-th iteration (with
1<i<n-23),we

1. Choose one point s; € S; at random such that
no remaining point of Si41 := S; \ {si} lies within
CH(Pi—1 U {s:})

2. Find an edge (vk,vk+1) of Pi—; that is completely
visible from s;, and replace it with the edges (vg, s;)
and (8;,Vk41)-

Figure 1: The point p does not see any edge of P
completely.

SWhen applied to 50 points the process size of the
arrangement-based code grew up to 236MB whereas Star Uni-
verse consumed only 16MB of main memory. Due to swap-
ping, the arrangement-based code was significantly slower
than Star Universe, too.
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Note that a point s; € &; which is suitable for
Step 1 always exists. It is less straightforward
to guarantee that a suitable edge always exists in
Step 2. As illustrated in Fig. 1, a point p which
lies outside a general polygon P need not see any
edge of P completely. However, if p lies outside
CH(P), there must exist at least one edge which is
completely visible from p. This can be shown by in-
duction: Compute the supporting vertices of CH(P),
and consider the chain from the left supporting ver-
tex to the right one. (This is the chain which faces
p.) If this chain consists of only one edge (defined by
the two supporting vertices), then it must be com-
pletely visible since both its endpoints are visible.
Otherwise, if the chain consists of & edges, then con-
sider its leftmost” edge ¢;. We are done if this edge is
completely visible. Otherwise, consider the leftmost
edge e; which is in front of e; (and which faces p).
Necessarily, the left endpoint of e; must be visible
from p. Thus, we obtain a new chain with at most
k—1 edges whose left and right endpoints are visible
from p.

By using Steady Growth, one can compute a sim-
ple polygon in at most O(n?) time, since all that has
to be done during each phase is to compute all edges
which are completely visible. (This can be done in
O(n) time, cf. Joe and Simpson [JS87].) Note that
selecting a suitable point s; in Step 1 can be car-
ried out in linear time, too. Unfortunately, Steady
Growth does not generate every possible polygon.

Space Partitioning Space Partitioning recur-
sively partitions S into subsets which have disjoint
convex hulls. Let &' be a such a subset of S. (Thus,
CH(S') does not contain any point of S\ S’.) When
generating a polygon P we will guarantee that the
intersection of P with CH(S') consists of one single
chain. The first point of this chain is denoted by s},
and its last point by s;. Note that both s’ and s
are located on the boundary of CH(S").

During the initial phase of the algorithm, we
choose sf,s; € S at random. Then the remaining
points of S are partitioned into a left and a right
set by the line £(sy,s;). For the general recursive
call of the algorithm, consider a subset S’ generated
by this recursive subdivision, and let s} be its first
point and s its last point. If s and s; are the only

points of &', then the line segment s's; is output
and the recursion is terminated. Otherwise, in order
to split S’ into two subsets S and S, we

1. Pick a point s’ € S’ at random.

"Le., the edge whose endpoint has the smallest angular
distance from the left supporting vertex.

2. Select a random line £ through s’ such that ¢
intersects s’s;. The line £ splits S’ into two subsets
S" and 8", where S" has s'; as its first and &' as its
last point, cf. Fig. 2. Similarly, " has s’ as its first
and s; as its last point.

Since S"” and S" lie on opposite sides of £, CH(S")
and CH(S") are disjoint. Furthermore, CH(S") and
CH(S") do not contain any point of S\ S'.

Unfortunately, Space Partitioning does not gener-
ate every possible polygon on S.

Figure 2: Partition of set S’ and a sample path
through S".

Permute & Reject For Permute & Reject, we cre-
ate a permutation of S and check whether this per-
mutation corresponds to a simple polygon. If the
polygon is simple then it is output; otherwise a new
polygon is generated.

Obviously, the actual running time of this method
mainly depends on how many polygons need to be
generated in order to encounter a simple polygon.
(In the next section, we report experimental results.)
Clearly, Permute & Reject produces all possible poly-
gons with a uniform distribution.

2-opt Moves This approach first generates a ran-
dom permutation of S, which again is regarded as
the initial polygon P. Any self-intersections of P
are removed by applying so-called 2-opt moves. Ev-
ery 2-opt move replaces a pair of intersecting edges
(vi, Vit1), (v]-,vj+1) with the edges ('Uj+1,’Ui+1) and
(vj,v;). In our application, at each iteration of the
algorithm one pair of intersecting edges is chosen at
random and the intersection is removed.

Van Leeuwen and Schoone [vLS82] showed that at
most O(n®) many 2-opt moves need to be applied in
order to obtain a simple polygon. Thus, an over-
all time complexity of O(n*) can be achieved. As
explained in Zhu et al. [ZSSM96], 2-opt Moves will
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produce all possiBle polygons, but not with a uni-
form distribution.

Incremental Construction & Backtracking
Finally we studied an approach based on exhaustive
search and backtracking which is akin to the work by
Shuffelt and Berliner [SB94]. We start with a polyg-
onal chain consisting of one randomly chosen point,
and we randomly add one point after the other to it
as long as the resulting chain remains simple. Back-
tracking has to be applied when a non-simple chain
is encountered. Clearly, the main crux is to avoid
any extensive backtracking.

In order to reduce backtracking, we keep an in-
ventory of those edges which still are usable for com-
pleting the polygon. (Edges which are no longer us-
able get marked.) Initially, all edges of the complete
graph on S are usable. When adding point s, and
thus using some edge e, all the edges that intersect
e are marked. Furthermore, if a point is adjacent
to two other points that both have only two inci-
dent unmarked edges, we mark all the other edges
incident upon that point. Clearly, backtracking is
necessary if any of the following conditions is vio-
lated:

1. Each point that does not yet belong to the polyg-
onal chain under construction has at least two inci-
dent unmarked edges.

2. At most one point adjacent to the point last
added has only two incident unmarked edges.

3. Points that lie on the boundary of CH(S) appear
in the polygonal chain in the same relative order as
on the hull.

This algorithm produces every possible simple
polygon with positive probability. Clearly, its effi-
ciency depends on the amount of backtracking nec-
essary. (See next section.)

3 Practical Aspects

3.1 Implementation

We implemented our algorithms together with a test
bed in the programming language C. For the gen-
eration of random numbers we used rand48 of the
standard C library.

In order to keep the implementation simple and
still be able to handle data without the underlying
assumption of general position, our implementation
differs slightly from the description given above.

Star-Shaped Polygons For Star Universe, we re-
sort the vertices of the polygon (expressed in polar
coordinates with respect to p) each time we enter a
new kernel, thus simplifying the cumbersome han-
dling of multiple collinear points. In Quick Star,
we always sort points that have the same polar
angle with respect to the random point p (which
belongs to the polygon’s kernel) by their distance
from p. Thus, our implementation may miss some
star-shaped polygons on sets with multiple collinear
points.

Simple Polygons For calculating the edge visi-
bilities in Steady Growth, we did not implement the
linear algorithm by Joe and Simpson [JS87], but sim-
ply sorted the vertices around the point to add.

3.2 Experimental Results

We ran three different series of experiments, which
are reported in the following paragraphs: First, we
recorded the CPU-consumption of our algorithms.
Second, we obtained experimental bounds on the
numbers of star-shaped and simple polygons in
terms of the cardinality of the point set. Third, we
evaluated the number of polygons generated by our
algorithms in order to assess the quality and practi-
cal applicability of these heuristics. (All tests were
run on Sun SPARCstations 20.)

CPU-Time Consumption We measured the
CPU-time consumption of each algorithm when ap-
plied to random point sets (within the unit square)
of the following cardinalities: 10, 25, 50, 100, 200,
300, 400 and 500. For each of these cardinalities we
generated three independent sets. Our algorithms
had to compute 50 polygons on each of these sets.
The mean elapsed CPU-times (in milliseconds) were
plotted on a logarithmic scale (log, t).

As expected, Star Universe is only feasible for in-
put sets with a small cardinality, cf. Fig. 3: Our
attempts to run Star Universe on 100 points had to
be aborted due to lack of main memory. (192MB did
not suffice.) Quick Star, however, seems well suited
for larger point sets: computing a star-shaped poly-
gon on 500 points takes roughly 62 milliseconds.

Two of the algorithms for the generation of sim-
ple polygons are not applicable to anything but ex-
tremely small point sets, cf. Fig. 3: In more than
three weeks of running time we were not able to
generate results for 25 points when using Permute &
Reject or Incremental Construction & Backtracking.
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Figure 3: CPU-consumption of the algorithms.

Among the remaining three methods, Space Par-
titioning is significantly faster than the two other al-
gorithms. Roughly, Space Partitioning takes about
55 milliseconds to compute a simple polygon on 500
points, whereas Steady Growth and 2-opt Moves con-
sume about 25 seconds. Note that Quick Star and
Space Partitioning consume about the same amount
of CPU time.

Number of Polygons By using a modified ver-
sion of Incremental Construction & Backtracking, we
determined the number of simple polygons on groups
of ten sets with 10 respectively 15 random points.
(Due to lack of space, no test results for sets of 15
points are included in this abstract; see the full paper
for details.) For star-shaped polygons, we enumer-
ated all polygons for groups of ten sets with 10, 15,
20, 25 and 50 points each by means of Star Universe.
All these numbers are listed in Table 1. In our tests,
all polygons which describe the same geometric fig-
ure were counted exactly once. Note that test runs
for counting all simple polygons on 20 points crashed
due to lack of disk space after generating more than
three million different polygons.

{ Simple Star-Shaped ]

l |S;| |[ 10 T 15 10 LL 25 50 |
1 351 195,554 67 320 1,061 2,666 59,017
2 329 58,768 51 266 1,015 2,340 77,685
3 164 65,338 44 287 995 3,318 63,741
4 776 291,232 103 516 1,816 4,120 82,478
5 146 149,701 44 358 1,170 2,827 66,708
6 321 269,022 57 435 1,450 3,696 71,943
7 852 199,266 76 418 1,447 3,906 70,147
8 346 150,423 0 357 1,136 3,203 67,213
9 380 281,324 6 382 1,293 3,680 64,466
10 599 205,536 7 392 1,353 2,916 65,004

Table 1: No. of simple and star-shaped polygons.

Quality Assessment For each algorithm, we de-
termined the ratio of the number of polygons gener-
ated and the total number of possible polygons ex-
perimentally. When generating 100,000 star-shaped
polygons on 20 points with Quick Star, the mean
percentage of polygons hit at least once was 91.439
with a minimum of 89.250 and a maximum of 94.679.
When generating 10,000 polygons on 20 points we
got 65.361 as mean, 59.141 as minimum and 69.241
as maximum. For 25 points and 100,000 polygons
generated, we got a mean of 84.045, a minimum of
80.461 and a maximum of 87.634, whereas the cor-
responding numbers for 10,000 polygons are 51.769,
44.830, and 55.085. Since Quick Star is capable of
producing all possible star-shaped polygons it does
not come as a big surprise that the hit rate goes up
as the number of polygons generated is increased.

Among the methods for simple polygons, one
method is significantly worse than the others: In-
cremental Construction & Backtracking. As can
be seen in Fig. 4, less than half of all possible
simple polygons are hit at least once when gen-
erating 10,000 polygons on 10 points. As could
be expected, Permute&Reject exhibits an optimal
hit rate of 100%. For the three algorithms with
a modest CPU-consumption, the results are good
for 2-opt Moves, acceptable for Steady Growth, but
rather poor for Space Partitioning. Note that the
results improved when generating 100,000 polygons
instead of 10,000 polygons, cf. Fig. 5: 2-opt Moves
generates almost all polygons, Steady Growth lies
around or above 90%, and Space Partitioning gener-
ates about 80-90% of all possible polygons. In both
tests the distribution of the polygons turned out to
be highly non-uniform, though.

™ ey T T
i 2-optMoves —
Steady Growth: ——-
: Space Partitioning -

Incremental Construction & Backtracking -——
Permute & Reject -—-

Percentage hit

Figure 4: 10,000 simple polygons on 10 points.

However, when generating 100,000 polygons on
100 points all three algorithms 2-opt Moves, Steady
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Figure 5: 100,000 simple polygons on 10 points.

Growth and Space Partitioning behaved optimally:
They all generated exactly 100,000 different poly-
gons! It is likely that this result is due to the fact
that there exists an enormous number® of simple
polygons on 100 points.

On one hand, our tests? suggest that a user of
any of these three algorithms need not worry about
repeatedly generating the same “random” polygons
when dealing with 100 or more points. On the other
hand, the distribution of the polygons generated
should not be expected to be (close to) uniform.

4 Conclusion

Summary We presented five heuristics for the
random generation of simple polygons. Three of
them, namely 2-opt Moves, Steady Growth and Space
Partitioning, are suited for practical purposes. How-
ever, for sets with 10-15 points we experienced a
clear trade-off between speed and quality. When the
CPU-consumption is not at a premium, one can af-
ford to generate a fairly large variety of polygons by
2-opt Moves. In order to achieve maximum speed
Space Partitioning would be the method of choice.
Steady Growth is slightly faster than 2-opt Moves but
generates a less rich set of polygons. Quick Star (for
the generation of star-shaped polygons) has about
the same characteristics as Space Partitioning.

For sets of 100 or more points, the class of sim-
ple polygons is rich enough and the power of these
three heuristics is large enough that any of them can

8We encountered sets with 20 points which already allowed
more than three million simple polygons.

9 Any further statistical analysis of the distributions of the
polygons generated had to be abandoned due to hardware
constraints imposed on the CPU-time consumption and the
available main memory and disk space.

be expected to yield fairly good results. In particu-
lar, it is fairly unlikely that a simple polygon will be
generated repeatedly by any of these three heuris-
tics. The same comments apply to Star Universe for
generating star-shaped polygons.

Open Problems In order to enhance our statisti-
cal analysis, we would need to circumvent time and
space constraints imposed by the hardware on the
enumeration of all simple (respectively, of all star-
shaped) polygons on S. Also, it would be desirable
to classify in an intuitive manner the classes of poly-
gons that are likely to be generated by our heuristics.
From a theoretical point of view, it remains an
open problem to generate polygons on a given set
of vertices uniformly at random. From a practical
point of view, it is not even clear what constitutes a
good “random” polygon. A typical user may want to
generate “random” polygons within some fuzzy sub-
class of polygons: e.g., generate random polygons
which consist of two dominant “roughly convex” re-
gions linked by a “roughly z-monotone” tunnel.
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