Optimizing a Corridor between T'wo Polygons with an Application to
Polyhedral Interpolation®

Gill Barequet!

Abstract

We consider the problem of finding a corridor (a sep-
arating strip) between two polygons, whose intersection
with a third (convex) polygon is of maximum area.
The application in mind is the interpolation in sim-
ple branching cases, where the sought volume branches
from one contour in one slice into two polygons in an-
other parallel slice. We present a linear-time plane-
sweep algorithm which computes such a corridor. When
the third polygon is not convex the running time of the
algorithm is quadratic in the size of the input.

Keywords: surface reconstruction, plane-sweep,
branching surfaces, slice interpolation, polyhedra.

1 Introduction

The problem of reconstructing the boundary of a solid
object from a series of parallel planar cross-sections has
attracted much attention in the literature during the
past two decades. The main motivations for this prob-
lem come from medical imaging applications and from
geographic information systems.

The input usually consists of a series of parallel pla-
nar slices, each consisting of a collection of simple non-
crossing polygons (output of an edge-detection process
applied to the raw data). The goal is a polyhedral solid
model whose cross-sections along the given planes coin-
cide with the input slices. A natural simplification of
the problem is to consider only a single pair of successive
parallel slices, and to construct a solid model within the
layer delimited by the planes of the slices, which inter-
polates between the given slices. The concatenation of
these models gives a solution model for the full problem.

There has been an extensive literature on this prob-
lem. Many of the earlier works studied the simple
variant, where each slice contains only one contour.
These studies either sought a global optimization of
some objective function [FKU, Sh, SP, Ke, WA, WW],
or used a local advancing rule, after the tiling starting
points at the two contours were somehow determined
[CS, GD, KSD, EPO].

*Work on this paper by the first author has been supported
by the Israeli Ministry of Science, Eshkol Grant 0562-1-94.

tSchool of Mathematical Sciences, Tel-Aviv University, Tel-
Aviv 69978, Israel. E-mail: barequet@math.tau.ac.il

$Institut flir Informatik, Freie Universitdt Berlin, Takustrafie
9, 14195 Berlin, Germany. E-mail: wolfers@inf.fu-berlin.de

Barbara Wolfers?

Several works handled the more involved case, where
one of the slices (or both) contains more than one con-
tour. These works include [Sh, ZJH, EPO, MSS, CS, Sh,
EPO, MSS, BG, CP, Bo, BG, BS]. In the full version
we review these works in detail. The fairly simple 1-
to-2 branching cases are usually solved by merging the
two contours in one slice into one contour by adding
“bridges” between them [CS, Sh, EPO, MSS]. As noted
in several works (e.g., in [Sh, BS]), the bridges in one
slice may be inconsistent with the geometry of the other
slice, if they are not added with care.

In this work we deal with simple branching cases, in
which one (convex) contour in one slice (denoted by R')
is associated with two contours in the other slice (de-
noted by P and Q). We also denote by R the projection
of R’ onto the plane that contains P and). We prepro-
cess R’ by splitting it into two parts, which will be asso-
ciated with P and @, such that the combination of the
two interpolations will be a feasible solution. That is,
the two interpolated surfaces will be valid 2-manifolds,
they will not intersect, and their combination will form
a valid polyhedron bounded by the three input contours
and the interpolated surfaces.

We observe that every split of R’ along a line paral-
lel to a separator of P and @ yields a feasible solution.
Each set of all parallel separators form a “corridor” be-
tween P and Q. In order to find such corridor which
also considers the geometry of R, we compute the cor-
ridor that maximizes the area of intersection with R.
This corridor provides a direction of splitting (e.g., by
using its median). The motivation for this choice is that
this corridor is a compromise between considering only
P and @ (e.g., by splitting R’ along the direction of the
widest corridor between P and @), and considering only
R (e.g., by splitting R’ into two polygons of equal size).

Here is a brief overview of our algorithm. We first
identify the range of slopes which allow feasible corri-
dors between P and Q; we rotate a maximum-width
corridor in this range. We collect all the critical
events of the rotation—all the vertices of P, @, and
R, through which such corridor passes. Then we rotate
the maximum-width corridor in a plane-sweep manner.
At each event we update the status of the rotation, and
compute the corridor within the last slope interval with
maximume-area intersection with R. At the end of the
rotation we obtain the optimum corridor. Although the

32

(a) Input data (top view)

(b) Interpolated surface (isometric view)

Figure 1: Splitting a contour in a branching case

algorithm is quite simple, its details and analysis are
delicate.

Finally, we use the optimum corridor for determin-
ing the line along which we split the polygon R'. Two
piecewise-linear surfaces are interpolated between the
two parts of R’ to P and Q. For this purpose we use any
of the algorithms cited above. An example of such inter-
polation is illustrated in Figure 1. We remark that the
solution to any interpolation problem is not uniquely
defined, and the measure of ‘goodness’ of a proposed
solution is rather subjective and intuitive.

The paper is organized as follows. In Section 2 we
give a more precise definition of the problem. In Sec-
tion 3 we discuss the concept of a corridor between two
polygons with a maximum intersection-area with a third
polygon. Section 4 presents an overview of the algo-
rithm. Then, Section 5 describes the initialization of
the rotational-sweep, and Section 6 gives the details of
the sweep itself. In Section 7 we describe the application
of the algorithm to the surface-interpolation problem in
simple branching cases. Section 8 analyzes the complex-
ity of the algorithm. In Section 9 we give an extension
to our algorithm, and we end in Section 10 with some
concluding remarks.

2 Statement of the Problem

We are given a pair of parallel planar slices: the first
slice (II;) consists of one convex polygon (R’), while the
second slice (II;) consists of two line-separable polygons
(P and Q). Each polygon is given as a circular list of
vertices, each specified by its (z,y) coordinates. The
polygons are oriented in the counter-clockwise direction.

The problem we address is splitting R’ into two parts

'> and Ry, to be interpolated with the polygons P and
.Q. The approach suggested in this paper is splitting R’
by a line £ parallel to a separator between P and Q.
The direction of £ is chosen such that the intersection
of a maximum-width strip between P and Q (in this
direction) with R is of maximum area.

3 A Corridor with Max-Area Overlap

We assume w.l.o.g. that there is a vertical separator
between P and @, and that P is the left polygon. A
corridor C between P and @Q is an infinite strip bounded
by two parallel lines #; and £», where £; is tangent to
P and 4, is tangent to @, and both 4; and £4; separate
between P and @. In the sequel we also refer to ¢; and
£ as the borders of C. The slope 6 of C is the slope of £;
and £5; we thus denote the corridor by Cy. The median
of a corridor is the line parallel to and equidistant from
its borders.

Assume that R’ is split along a line £ parallel to a
corridor and within it, and interpolate two surfaces be-
tween P and @ to the corresponding parts of R'. It
is easily seen that if the two interpolated surfaces are
valid, then their union is a feasible solution to the whole
interpolation problem. Indeed, the two surfaces cannot
intersect, since they are separated by any plane that
contains £ (within II;) and a line parallel to £ which
separates between P and @ (within II;). The two re-
constructed solids share the segment which is the in-
tersection of £ with R'. As explained in Section 1, we
choose the corridor between P and @) with maximum
overlap with R. In many practical interpolation cases
(especially when R’ is convex) this choice leads to an
‘intuitive’ branching.

4 Overview of the Algorithm

We consider the following 2D problem: Given two
polygons P and @ separable by a line, and a convex
polygon R, find a corridor C* between P and @ such
that the area of the intersection of C* and R is maximal.
Note that not only P and @ do not intersect but their
convex hulls are also distinct.

Let the total number of vertices of P, @ and R be
n. We use a plane-sweep algorithm in order to solve
the problem in O(n) time. While traditionally a line is
swept in some direction, we rotate the widest possible
corridor between the two extreme slopes 6’ and §”. Each
slope ' < @ < 6" corresponds to a corridor Cy. While

33

rotating the corridor, we maintain its supporting points
on P and @ and its intersection points with R. The goal
is to obtain a function F(6) that measures the area of
the intersection between Cy and R.

We identify two types of events:

1. A slope @ at which the supporting vertex of either P
or @ changes. This type of event occurs when an edge
(of either P or Q) supports the corridor.

2. A slope 6 at which a border of the corridor occurs at
a vertex of R.

Events of type 1 change a vertex of either P or Q,
around which the corresponding border of the corridor
is rotated. Events of type 2 cause a change in the set of
edges of R that are intersected by the corridor borders.
We store events of type 1 in two lists (one for vertices
of P and one for vertices of Q). We construct four more
lists of vertices of R, at which events of type 2 occur
(two for each border, from which one is for the upper
envelope of R and one is for the lower envelope). All the
lists are sorted in increasing order of the corresponding
corridor slope. Finally, we merge the six lists into one
event queue.

Since R is convex, the borders of every corridor be-
tween P and @ intersect with at most four edges of R.
The algorithm is the following:

1. Initialization.
(a) Compute the event queue g =6’ < 6; <6, <...<
b1 <O =0";
(b) Put F(6) := 0, areamax := 0, and
Omax := indefinite;
2. Sweeping.
Fori=1tok do
(a) Compute the function F(6) for 6;_; < 8 < 6;;
(b) Compute the slope 8 for which
F(6;) = maxy,_, <o<0. F(0);
(c) if F(6;) > areamax then put areamay := F(67)
and bpmax = 07
od

5 Initializing the Sweep

In this step we compute the events of the rotational-
sweep algorithm. First, we compute CH(P) and CH(Q)
(since only vertices of P and Q which lie on their con-
vex hulls may contribute events of type 1). Then we
compute the extreme slopes ¢’ and 6” and the corre-
sponding supporting vertices of P and Q. We set the
direction of rotation to be counter-clockwise. Thus we
obtain the two lists of events of type 1; their first (resp.
last) vertex supports the corridor Cy (resp. Cyn).

Now we construct the four event lists of type 2 con-
tributed by vertices of R. In order to do that, we rotate
the common tangent to P and Q with slope #’ counter-
clockwise until it becomes the other common tangent to
P and @ with slope 6”. We perform two rotations: one
along Q and one along P. These two rotations represent
the two borders of all the feasible corridors. We collect

all the occurrences of the rotated line at vertices of R
as described below. (We detail only the rotation of the
right border.) We distinguish between two cases:

1. Cy N R # 0. First we locate the intersection points
(u and v) of Cy: with R (see Figure 2(a)). Then we ro-
tate the tangent along Q, and collect all the hit vertices.
The lower intersection point moves along R from v in
a counter-clockwise direction until it reaches s. In case
the chain su (or portion of it) is not “hidden” by Q,
the lower intersection point continues to move along R
in the same direction. At some slope the tangent may
even cease to intersect with R (when the whole chain su
is not “hidden”) and resumes the intersection when we
rotate the tangent further. Now the intersection point
moves along R in a clockwise direction until it reaches
s again. Similarly, the upper intersection point (which
starts at «) may first move along R in a clockwise di-
rection (within the chain us), then change its direction
to counter-clockwise until it reaches u again. Then it
continues to move in the same direction until it reaches
t. Thus, all the vertices of R from v to s and from u
to t are collected once (in their counter-clockwise order
along R), and vertices between s to u may be collected
as many as four times. The collected vertices are al-
ready sorted (in two lists) according to their slopes.

2. Co' N R = 0 (see Figures 2(b,c)). In this case we first
locate the first right border of a feasible corridor that
touches R. For this purpose we compute the tangent to
R from above and to @ from above (if R is below Cy/)
or below (otherwise). In case its slope belongs to the
feasible range [#’,6"], we initialize the collection at this
slope and resort to case 1 above. Otherwise the right
border of any corridor does not intersect with R, thus
does not contribute any event of type 2.

Now we merge all the six lists into one queue.

6 Sweeping

The key idea is to maintain a small (constant) amount
of information which does not change between succes-
sive events, and allows simple updates at events and
fast investigation of each interval of slopes defined by
two successive events. Consider an interval of corridor
slopes between two events 6;_; and 6;. While the corri-
dor is rotated in this interval, there is no change either
in the edges of R intersected by the corridor borders
or in the vertices of P and @ that support the corri-
dor. These six pieces of information define precisely the
status of the sweep.

The rotational sweep starts at the degenerate corri-
dor Cyr. The two supporting vertices p € P and g € Q
form the first pair of points around which the corridor is
rotated. In case Cys occurs at an edge of P or Q, there
are two events with the same slope, causing a degenerate
interval. We may omit this degeneracy by considering
only the vertex with higher (counter-clockwise) slope
as an event. We compute the function F(6) that mea-

34

sures the area of the intersection between R and Cj.
This function is composed of the functions F;(6) (for
i=1,...,k), where F; is defined only at the ith slope
interval [0;_1, 0,‘].

The rotation starts with a corridor of slope 6y = ¢'.
The width of Cg, is 0, hence F;(fo) = 0. Assume that
F(6i-1) has already been computed. We now compute
the function F;(@). Instead of computing it directly,
we compute the difference between F;(6) and F(6;-1).
Finding the maximum difference in the ith interval will
also imply the maximum of F in this interval.

Let s be the line segment defined by the current ver-
tices p € P,q € Q that support the corridor in the cur-
rent interval. We identify four cases of the status of the
rotated corridor, relative to the edges of R intersected
by the corridor borders and to the line segment s:

1. All the intersections of edges of R with the borders
of the corridor (£; and £3) lie on the same side of s.

2. The line s separates between the intersections of
edges of R with £, and the intersections of edges of R
with £5.

3. Each border of the corridor intersects R in two points
which are separated by the line s.

4. The intersection points of one border with R are sep-
arated by s, while the intersection points of the other
border with R lie on the same side of s.

Figure 3 shows the first case. Figures 4(a,b,c) illustrate
the other three cases (2, 3, and 4, respectively).

Consider, for example, case 1. The difference between
Fi(8) and F(6;-1) is given by the difference between
the two shown quadrangles. (In case one border does
not intersect with R, the corresponding quadrangle is
empty.) Let e; (for j = 1,...,4) be the edges of R
intersected by the borders of Cy;_,, and let B; be the
angle between e; to the corresponding border. Let d; be
the distance between the jth intersection point and the
corresponding supporting point (p or g) along the cor-
responding border of Cy,_,. Simple calculation shows

in(8—0;_ jd? sin B;
that Fi(6) = F(6i-1) + SLGh=d 54 | s,
where ¢;,c4 = 1 and ¢2,c3 = —1. When £; (resp. £2)
does not intersect with R, we simply set d; and d3 (resp.

d3 and d4) to 0.

Figure 3: The difference between Cy,_, N R and CsNR
(case 1)

Theorem 1 The function F;(0) has at most three local
mazima within the interval [6;_1, 6;].

Proof. We ignore the insignificant constant term
F(0:—1) in the definition of F;, set a = 6 — 6,
and investigate F; as a function of a: Fj(a) =

¢;d%sin B; sin @

%E;:l]sin(ai’ﬁj) S

Consider the equation Fj(a) = %Z;*:l Eﬁl—z’% =
0. We represent each denominator sin(a + f;) by
the term p;cos(2a) + gjsin(2a) + r;, where p; =
—1cos(28;), ¢; = 3sin(2B;), and r; = 3. After mul-
tiplying out the denominators, this becomes a third-
degree trigonometric equation in cos(2«) and sin(2c).
Such an equation has at most 6 roots within a 27-
range of 2. This can be verified by separating the
odd powers of sin(2a) from the even powers, substitut-
ing cos(2a) = t and sin(2a) = V1 — t2, and squaring.
Thus the equation has at most 6 roots within a 7-range

35

O T

< =

|
v

\ v v
0i—1 6 6i—1 0 0i—, 0 ;-1 0
(a) Case 2 (b) Case 3

Figure 4: The difference between Cy

of . Hence there are at most 3 local maxima within
this range. O

The global maximum (in this interval) of F;(6) can be
computed in constant time by using standard numerical
methods.

The other three cases are handled similarly, where the
only difference is in the signs of ¢; (for j = 1,...,4).
Figures 4(a,b,c) show the cases 2-4 described above.
The areas with dark (resp. light) shading are subtracted
from (resp. added to) the term F(6;—;).

To recap, for each event we update the status of the
rotation and compute the slope with maximum area of
intersection in the last interval. We keep track of the
global maximum intersection area and of the intersec-
tion area of the current event. The latter is the constant
term in the measure function of the next interval.

7 Application to Interpolation

The application is the interpolation between the slice
that contains R’ to the slice that contains P and Q.
We use the algorithm described in Sections 5 and 6 for
determining the line along which the polygon R’ is split
prior to the interpolation. First we find the corridor Cy
between P and @ with the maximume-area overlap with
R. In case the two borders of Cjy intersect with R, we use
the median of Cy for splitting R'. In case a border of Cy
does not intersect with R, we narrow Cy by translating
the non-intersecting border (while keeping its slope ¢
unchanged) towards the nearest vertex v € R, such that
the border supports R at v, and use the median of the
narrowed corridor for splitting R'.

Two situations make the maximum-area corridor-
overlap problem trivial:
1. No corridor between P and @ intersects with R.
This case is identified during the initialization of the al-
gorithm. The maximum-area overlap in this case is 0.
This situation happens when R is “hidden” by P or Q.
That is, when R fully lies in the same wedge defined
by Ce: and Cyn as P (or Q), but does not “penetrate”

N R and Cy N R (cases 2, 3, and 4)

-1

towards the apex of the wedge.

2. There is a range of corridors (possibly only one) that
fully cover R. This case is identified during the rota-
tion of the corridor. The maximum-area overlap in this
case is the area of R. This situation happens when R is
“between” P and Q.

In both cases the relations between P, Q, and R are
less restrictive (for the interpolation problem). Either
because the position of R is too “bad” (in case 1) or
too “good” (in case 2). So the choice of an “intuitively
good” split of R’ in case 1 becomes less obvious then in
the regular situations, whereas many solutions in case
2 seem to be pleasing enough.

Since the choice of a corridor between P and @ of
maximum intersection-area with R becomes irrelevant
(in case 1) or of less significance (in case 2), we prefer in
these cases the corridor between P and Q of maximum
width. First, we use the algorithm described in [Ed] for
finding the closest pair of vertices p € P,¢ € @ which
lie on their convex hulls. The corridor C* of maximum
width between P and @ is supported by p and ¢ and
orthogonal to 7g. Then the slope of C* is used for split-
ting R'. We may use any line with this slope which splits
R’ into two non-empty polygons. Reasonable splitters
are the line with the longest portion that lies in the in-
terior of R/, the line that splits R’ into two polygons of
equal areas, and the median of C*.

8 Complexity Analysis

We measure the complexity of the algorithm as a
function of n, the total number of vertices of the poly-
gons P, @, and R.

First we compute the convex hulls of the polygons P
and Q. This step requires O(n) time (see, e.g., [Me]).
Then we initialize the algorithm by computing six event
lists. The two lists of events of type 1 require first locat-
ing the first and last events (vertices) of P and Q and
then constructing the event lists. The two tasks can
be performed in O(logn) and O(n) time, respectively.

36

We also compute four lists of events of type 2. Find-
ing the extreme corridors requires O(logn) time, while
constructing the lists requires O(n) time. Finally, we
merge all the event lists into one queue in O(n) time.

. In case we identify a degeneracy of type 1, we lo-
cate the widest corridor in O(logn) time and compute
a splitter. Each of the first two proposed splitters can
be found in O(logn) time (by using a binary search),
while the third can be found in O(1) time.

In non-degenerate situations we invoke the main algo-
rithm. Each event is processed in constant time. Since
there are O(n) events, the whole event queue is pro-
cessed in O(n) time. In case we detect a degeneracy
of type 2, we switch to the widest-corridor paradigm,
which requires O(logn) time.

To conclude, the whole algorithm runs in O(n) time.
The algorithm is sensitive to the number of events k. In
the worst case k = ©(n), since every vertex of P and Q
may contribute one event, and every vertex of R may
contribute at most 4 events. However, when k = o(n)
(e.g., when P and Q are very close) the running time,
except reading the input and computing the two convex
hulls, is O(log n+k). In this case the computation of the
convex hulls becomes the bottleneck of the algorithm,
and may be omitted when P and @ are convex, or when
their convex hulls are given as input.

9 Extensions

We now discuss a relaxation of the requirement that
R be convex. Assume then that R is not convex. The
intersection of a corridor Cy with R may be more com-
plex than before, since each of its borders may now
cross more than two edges of R. Instead of maintain-
ing (at most) two intersection points for each border,
we have to maintain a larger set of intersections. De-
note the size of this set within the slope range [6;—1, 6;]
by m;. Then, the function F;(6) that measures the in-
tersection area within this range is 7;(6) = F(6;-1) +

sin(6—6;—1) <—m; cjd? sin §; .
3 EJ-=1 =615 By using the same ar-

gument as that given for Theorem 1, it is easily shown
that F;(f) has at most m; — 1 local maxima in a 7-
range of 8. Therefore, processing an event may take as
much as O(n) time, making the total running time of
the algorithm O(n?). However, the new solution may
become irrelevant to the interpolation problem because
R' may be split into more than two parts. We omit the
discussion of this situation in this version of the paper.

10 Conclusion

We have proposed an algorithm for finding a corridor
between two polygons that maximizes intersection area
with a third convex polygon. The algorithm runs in
optimal time linear in the complexity of the input poly-
gons. Relaxing the requirement that the third polygon
be convex makes the algorithm run in quadratic time.

We applied this algorithm to the problem of surface

interpolation in 1-to-2 branching cases. The single con-
tour in one of the slices is split into two parts, which
are interpolated separately with the two contours in the
other slice. The main goal of our algorithm is to split
the single contour with special care to the geometry of
the two contours in the other slice, while most of the
previous methods, that we are aware of, merge the con-
tours of the other slice by adding “bridges”, which might
conflict the geometry of the single contour.

References

[Bo] J.D. BOISSONNAT, Shape reconstruction from planar cross
sections, CVGIP, 44 (1988), 1-29.

[BG] J.D. BOISSONNAT AND B. GEIGER, Three dimensional re-
construction of complex shapes based on the Delaunay triangula-
tion, in: Proc. Biomed. Image Process. and Biomed. Vis. (R.S.
Acharya and D.B. Goldof, eds.), 1905, SPIE Press, Bellingham,
WA, 1993, 964-975.

[BS] G. BAREQUET AND M. SHARIR, Piecewise-linear interpola-
tion between polygonal slices, Proc. 10th ACM Symp. on Compu-
tational Geometry, 1994, 93-102; full version to appear in Com-
puter Vision and Image Understanding, 63 (1996).

[CP] Y.-K. CHol aND K.H. PARK, A heuristic triangulation al-
gorithm for multiple planar contours using an extended double
branching procedure. The Visual Comp., 10 (1994), 372-387.
[CS] H.N. CHRISTIANSEN AND T.W. SEDERBERG, Conversion of
complex contour line definitions into polygonal element mosaics,
Computer Graphics, 13 (1978), 187-192.

[Ed] H. EDELSBRUNNER, Computing the extreme distances be-
tween two convex polygons, J. of Alg., 6 (1985), 213-224.

[EPO] A.B. EKOULE, F.C. PEYRIN, AND C.L. ODET, A triangu-
lation algorithm from arbitrary shaped multiple planar contours,
ACM Trans. on Graphics, 10 (1991), 182-199.

[FKU] H.FucHs, Z.M. KEDEM, AND S.P. USELTON, Optimal sur-
face reconstruction from planar contours, Comm. of the ACM,
20 (1977), 693-702.

[GD] S. GANAPATHY AND T.G. DENNEHY, A new general trian-
gulation method for planar contours, ACM Trans. on Computer
Graphics, 16 (1982), 69-75.

[Ke] E. KEPPEL, Approximating complex surfaces by triangula-
tion of contour lines, IBM J. Res. and Dev., 19 (1975), 2-11.
[KSD] N. KEHTARNAvAz, L.R. SmarR, anND R.J.P. DE
FIGUEIREDO, A syntactic/semantic technique for surface recon-
struction from cross-sectional contours, CVGIP, 42 (1988), 399—
409.

[Me] A. MELKMAN, On-line construction of the convex hull of a
simple polyline, IPL, 25 (1987), 11-12.

[MSS] D. MEYERs, S. SKINNER, AND K. SLOAN, Surfaces from
contours, ACM Trans. on Graphics, 11 (1992), 228-258.

[Sh] M. SHANTZ, Surface definition for branching contour-defined
objects, Computer Graphics, 15 (1981), 242-270.

[SP] K.R. SLOAN AND J. PAINTER, Pessimal guesses may be op-
timal: A counterintuitive search result, IEEE TPAMI, 10 (1988),
949-955.

[WA] Y.F. WANG AND J.K. AGGARWAL, Surface reconstruction
and representation of 3D scenes, Pat. Recog., 19 (1986), 197-207.
[WW] E. WeLzL AND B. WoOLFERs, Surface reconstruction be-
tween simple polygons via angle criteria, J. of Symbolic Compu-
tation, 17 (1994), 351-369.

[ZJH] M.J. Zypa, A.R. JonNeEs, AND P.G. HoGaN, Surface
construction from planar contours, Computers and Graphics,
11 (1987), 393-408.

37

