FINDING THE SET OF ALL MINIMAL NESTED CONVEX POLYGONS
(EXTENDED ABSTRACT)
J. Bhadury, University of New Brunswick, Fredericton, N.B., Canada
R. Chandrasekaran, The University of Texas at Dallas, Richardson, TX , U.S.A.

Abstract. Given two simple polygons P, and P,,, with P, completely contained in P,,,, the Minimal Nested Polygon
problem is to find a polygon P* that is completely contained in the annulus between P, and P;;, contains P;, and has the
minimum number of edges. Given P, and P,,, there may be an infinite number of Minimal Nested Polygons. In this
paper, we consider the case where Py and P, are convex and have attempted to characterize the set of all Minimal
Nested Polygons by giving two different algorithms. The first partitions the annulus into disjoint regions to identify all
points in the annulus that can be assumed to be the vertex of some Minimal Nested Polygon. The second algorithm
identifies those points that can be assumed to lie on some Minimal Nested Polygon. The time taken by the algorithms
is O(n®), where n is the total number of edges in P, and P, and ® is the number of edges in P*.

1 Introduction

The Minimal Nested Polygon problem is defined as the following: given two simple
polygons P, and P,,,, with P,, completely contained in P, (i.e. P, C P,,), find a nested polygon
(i.e. one that is contained in the annulus between P, and P, and contains the inner polygon P,)
P*, that has the fewest number of edges. This problem has applications in robotics, collision
avoidance, stock cutting etc. and is hence extensively studied - see [1],[2],[3],[5]. When P* is
known to be non-convex, an O(n) time algorithm is given in [3] to find it, where n is the total
number of edges of P, and P,,. However if P* is known to be convex, the best algorithm is in
[1], which takes O(nlog®) time, where ® is the number of edges in P* (for a characterization
of when P* is convex see [4]). Given a pair of nested polygons P, and P,,, P* is not unique
(for example when P, (respectively, P,) is a large (respectively, small) triangle) - hence the
question ‘for a given pair of nested polygons P, and P, can the set of all Minimal Nested
Polygons be characterized ?’. This is important in applications where alternate Minimal Nested
Polygons are needed because of one being preferable to another. In this paper we have
attempted to address this question in the case where P, and P,,, (and hence P*, by [4]) are
convex. Two indices are first defined for every point in the annulus - the Polygon Index and
the Turn Index respectively. Two algorithms are then given that identify all points in the
annulus that can either be assumed to be the verrex of some P* or lying on some P*. The
algorithms are shown to take O(n®) time.

2 Preliminaries v
As mentioned before, P, and P,, are assumed to be convex polygons, with P,, C P, and
the Minimal Nested Polygon for P, and P, is assumed to be P*. 7 is assumed to represent the
total number of edges of P, and P, and &, the total number of edges in P*. The entire annular
region between P, and P, is referred to as the annulus and designated by [P,,-P,]. The
boundary of P, (respectively, P,) is referred to as bd(P,,,) (respectively, bd(P,)) and (Py-Py)
refers to all the points that are in the interior of the annulus - i.e. all points in [P,,-P;,] except
those on bd(P,,) and bd(P,). For two points x,y € [P,-P.]l, [x = y] is assumed to represent
a ray from x in the direction of y. Letx and y be two points on bd(P,,), with the property that
P, is completely on one side of the line segment [x,y] and let z be any point on bd(P,,,) that is
on the same side of [x,y] as P,,. Then, in a clockwise traversal of bd(P,,) that begins at z, if
x is encountered after y, then x is said to be clockwise of y. Further, x is said to be atleast

26

clockwise of y if either x and y are coincident or if x is clockwise of y.

For any point v € [P,,-P,], P(v) is defined as a nested polygon that passes through v and
has the minimum number of edges and 7(v) as a nested polygon that has v as a vertex and has
the minimum number of edges. ||P(v)| (called the Polygon Index) and |7()| (the Turn
Index) denote the number of edges in P(v) and T(v) respectively (obviously, | T(v) | = | P |).

For any point v € [P,-P,] a clockwise greedy structure G(v) is defined, that is
obtained as follows: (figure 1 shows G(a) for point a € bd(P,,)): from v the clockwise tangent
to P, is drawn - this tangent is assumed to intersect bd(P,,) (or, in other words, is tangential to
P,) at a vertex denoted by Tg#(v) (in case it intersects two vertices, 7g¢(v) is defined as the more
clockwise of these two vertices). The point of intersection of the ray [v - Tgt(v)] with bd(P,,)
is defined as v;. From v, this process is continued and successive points v,,v; etc. (called the
vertices of G(v)) are defined on bd(P,,) similarly until that vertex of G(v) is reached where v
becomes visible for the first time - it will be assumed throughout the paper that for any point
v, this occurs on the ¥ vertex of G(v). Then another clockwise tangent is drawn from v, to P,
to obtain the next vertex of G(v) (i.e the point v,,,) in a manner similar to the other vertices.
The line segments [v,v,],[Vi,Vs],..[Vi,Ves,] constitute G(v) - and these line segments are referred
to as the edges of G(v). | G)| is used to denote the number of edges in G(v). If the sequence
of anticlockwise tangents is taken from v, the resulting greedy structure is denoted by G,(v).
The point of intersection of the line segments [v,v,] and [v,,V,,,] is denoted by Inf(v). A point
v € bd(P,,) is defined as a tight point if v = v,. For such a tight point, G(v) is a closed
polygon and is referred to as a tight greedy polygon for the tight point v.

For any point v € [P,,-P,], consider the anticlockwise tangent from v to P, - the vertex
of P, that this anticlockwise tangent from v intersects is denoted by A#g#(v) - if it intersects two
vertices, the more clockwise of these two is chosen as Azgt(v). Then the point of intersection
of the ray [v - Atgt(v)] with bd(P,,) is denoted as Anti(v) - and since P, C P, if v € bd(P,,),
v and Anti(v) will occur on different edges of bd(P,,). For any pointv € bd(P,,) with | G()|
= &, the slack cone of v is defined as the entire region of the annulus bounded by the line
segments [V,v,,], [v,Anti(v)] and the section of bd(P,,,) between Anti(v) and v, (including these
boundaries themselves). For example in figure 1, if |G(a)| = & (and hence g, = a,,), then
the slack cone of a is the triangle [a, Anti(a), a;]. Note that slack cone for a point v is only
defined if v € bd(P,,) and |G)| = ®. For a point v € [P,-P,], the projector of v,
denoted by Proj(v) is defined as the point of intersection of the ray [v; = v] with bd(P,,) - in
figure 1, a is the projector of Int(a). For all v € bd(P,,), Proj(v) = v.

The following results are either known or easy to verify: (i) It is shown in [1] that for
any v € bd(P,), ® < |GW)| < &+1. (ii) If v is a tight point then | G() | = &. Further,
since P, C P,,, for a tight point v, v, = v,, = Anti(v) and v = v,,, = V,. (iii) For any point
v € bd(P,), |GW) | = ®+1 iff Anti(v) (respectively, v) is clockwise of v, (respectively, vs).
(iv) For any point v € [P,,-P,], the edges [v,,],[V;,Vs],...[v,V] represents T(v). Hence | T(¥)|
= |G()|. Based on these, we now state the following results.

Lemma 1: For any point v € [Po-Pul, @ < |Gw)| < ®+2 (hence, @ < [|[T0)| < ¢+2).
Lemma 2: For any point v € [P-Pyl, ® < [P0 | < &+1.
Lemma 3: Forany v € [P-P.], | Pv)| = @ iff v is in the slack cone of a point x € bd(P,y).

27

2 Partitioning bd(P,,) Into Critical Intervals

Consider a point v on bd(P,,) such that || G(v) || = &+1 (and hence v is clockwise of v;). As
v is moved clockwise on bd(P,,), along the edge of P, that it lies on, all vertices and edges of
G(v) move clockwise too - a direct consequence of the fact that bd(P,,) and bd(P,) are
continuous, and P, C P,,. During this movement of v, the following four events (heretofore
referred to as events I through IV) that can occur will be of interest to us: (I) An edge of G(v)
can encounter a new vertex of P,,. (I) A vertex of G(v) can encounter a new vertex of P,.
() v can encounter the next vertex of P_,. (IV) v can encounter a tight point on bd(P,,). We
now give an algorithm to partition bd(P,,,) into intervals that are "small” enough such that if the
point v is restricted to move inside an interval, none of events I through IV will occur.

Algorithm Partition - bd(P,)
1. Every edge of P, is extended to intersect with bd(P,,) and the two points of intersection are
considered critical points. Every vertex of P, is also considered a critical point.
2. For every critical point v found in Step 1, find the greedy structures G(fv/ and G,(v) and the vertices
of these two structures for this critical point are also included as critical points - for each critical point
v store the following: the value of k; the points Antifv), Tgt(v) and Atgt(v/; all the vertices of G(v)
(including v, ,); the points 7gt(v), Atgt(vJ) and functions év/d), for 1 </ < k+1.
3. The critical points obtained above in Steps 1 and 2 partition bd(P,,) into disjoint intervals - for each
interval do the following: check if there exists any tight point within this interval by checking if there
is a solution to the quadratic vfd) = v,(d) in this interval (there can be atmost 2 tight points per
interval). If a tight point exists, then for this tight point v, draw the tight greedy polygon and this tight
point and the vertices of its associated tight greedy polygon are also included as critical points. For
each such tight point v, store all parameters in Step 2. ¢

It can be shown that Partition-bd(P,,,), takes O(n®) time and produces a total of O(n®)
critical points bd(P,,) that partition it into as many intervals (heretofore referred to as critical
intervals) such that any two points within an interval have the same Turn Index. Further, note
that a tight point v € bd(P,,,) represents a ‘crossing over’ of the two points v and v,. Hence,
if there exist two points x,y € bd(P,,,) such that || G(x)|| and | G(y)| are not equal, then there
must exist atleast one tight point on the section of bd(P,,) between x and y. This leads to:

Corollary 4: After Algorithm Partition-bd(P,,) is over, for every critical interval [E,F). () If E
is not a tight point then Turn Index in (E,F) = | G(E)|. (i) If Turn Index in the interval (E,F)
is then it is guaranteed that |G(E)| = |GF)| = &.

3 PARTITIONING OF THE ANNULUS BASED ON || T(V) |
Now we give a polynomial time algorithm based on lemma 1, to partition the annulus according
to ll W) || . The algorithm is based on the idea of moving a point v clockwise on bd(P,,) and
tracing the locus of the point Int(v).
Algorithm Partition - | T(v) |

1. Find a P* and ¢ for P,, and P, using the algorithm in [1].
2. Partition bd(P,,,) into critical intervals using Partition-bd(P,,,).
3. For each critical interval [£,F] (assume that F is clockwise of £) do {

3.1 Retrieve G(E) and G(F) and identify /nt(E) and Int(F), Tgt(E) and Tgt(F).

3.2 Obtain the values of £',F*,tan@ and £;',E7,tang, for j=1,k,k+ 1. Retrieve the functions

6E(d), j=1,k,k+ 1. Using them obtain the locus of /nt(v) within this interval [E,F] as a point v

is moved from £ to F.

28

3.3 Partition the area of the annulus [P,-P,.] between the line segments [£, Tgt(E)1,[F, Tgt(E)]
and the interval [£,F] into two sets - the ‘outer’ set that is bounded by the critical interval [£,F],
the line segments [E,/nt(E)] and [F,Int(F)], and the locus of /nt(v) from Int(E) to Int(F). The
‘inner’ set is bounded by [/nt(E), Tgt(E)] and [Int(F), Tgt(E)], and the locus of /nt(v) from Int(E)
to Int(F). If E = Int(EJ, the two sets are defined similarly. See figure 2.
34 If E, # E then {
3.4.1 The following points are labelled with Turn Index = | G/E/|: all points in the
interior of the outer set, all points on bd(P,,) in the interval [£,F), all points on the locus
of /ntfv) (except /nt(F)), and all points on the line segment [E,/nt(E)].
3.4.2 The following points are labelled with Turn Index = | G(E)| + 1: all points in the
interior of the inner set and all points on the line segment (/nt(E), Tgt(E)]. } end if
3.5 If £, = E, (i.e. Eis a tight point) then {
3.5.1 Retrieve the function 6£,(d). By examining its first two derivatives at d = 0,
determine whether, for a point inside the interval, the Turn Index is ® or ® + 1.
3.5.2 The following points receive a label of Turn Index = Turn Index in (£,F): all
points on bd(P,) in the interval (£,F); all points on the locus of /nt(v) (except /nt(F)) and
all points in interior of the outer set.
3.5.3 The following points are labelled with Turn Index = Turn Index in (E,A) +1: all
points on the line segment (£, Tgt(F)]; and all points in the interior of the inner set.
3.5.4 The point £ is labelled with a Turn Index equal to ®. } end if } end for O

It can be shown that Algorithm Partition- | T(v) | takes O(n®) time and partitions the annulus
into as many disjoint regions with the property that all points within the same region have the
same Turn Index. Hence, for any point v € [P,,-P,], there exists a P* passing through v with
v as its vertex iff | T(v)| = @ and hence this partitioning identifies all points in the annulus that
can be assumed to be the vertex of some Minimal Nested Polygon for P, and P;,.

4 IDENTIFYING POINTS IN THE ANNULUS WITH |P(V)| = &.

Now we address the following question: given any point x € [P,,-P;], is there a P*
passing through x, with or without a vertex at x, and if so, produce it. This issue is addressed
now by developing a scheme based on lemma 3 that identifies all points in the annulus with a
Polygon Index of &.

After partitioning bd(P,,) using Partition-bd(P,,,), for every critical interval [E,F] with
Turn Index equal to &, we move a point v from E to F and find the entire region swept out by
the slack cone of the point v (see figure 3) - and because v remains within a critical interval, v,
remains atleast clockwise of Anti(v) and the slack cone exists for each point in the interval. The
region swept out is bounded by the following - the interval [E,F], the section of bd(P,,,) between
Anti(E) and F,, and the two envelopes formed by the line segments [v,Anti(v)] and [v,v,.,] as
v moves from E to F - called the ‘inner’ and the ‘outer’ envelopes respectively. The inner
envelope is given by the pair of straight lines [Anti(E),Atgt(E)], [Atgt(E),F]. The outer envelope
can be found on a case by case basis. Because E and F are adjacent critical points, they will lie
on the same edge of P,, and the same is therefore true of the pair of points E,; and Fs, -
however these two pairs of points may all be collinear or not; this gives rise to the following two
cases: Case (A): When E,, and F,, are not on the same edge as E and F (as in figure 3). Here
the upper envelope is the pointwise maximum of the line segment [v,v,,] as v is moved from
Eto F. Case (B): When the points E,,,F,.,,E and F are collinear. Here the upper envelope is
the section of bd(P,,) between Anti(E) and F. Based on this, the algorithm is as below.

29

Algorithm - I] Ptv) Il
1 Find a P* and ¢ for P,, and P, using the algorithm in [1].
2 Partition bd(P,,,) into critical intervals using A/gorithm Partition-bd(P,,,).
3 For each critical interval [£,F] (assume that F is clockwise of £) do {
3.1 Retrieve G(E), G(F), Anti(E], Anti(F) and identify /nt(E) and Atgt(E).
3.2 If(E, # E)AND (|GIE)| = &) then {
3.2.1 All points on bd(P,,) in the intervals [£,F] and [Anti(E).F,.,] are labelled with a
Polygon Iindex = .
3.2.2 Determine whether Case A or B is applicable and compute the outer and the
inner envelopes of the region swept out by slack cone. All points in this region,
including the ones on the envelopes are labelled with a Polygon Index = ®. } end if
3.3 K (E, = E), (i.e. Eis a tight point) then {
3.3.1 Retrieve the function 6£,(d). By examining its first two derivatives at d = O,
determine whether, for a point inside the interval, the Turn Index is ® or @+ 1.
3.3.2 If (Turn Index in (E,F) is ®+ 1) then {
All points in the line segment [Anti(E), E] are given a Polygon Index = . } endif
3.3.3 If the Turn Index in the interval (E,F) is ® then {
All points on bd(P,,) in intervals [E F] and [Anti(E),F,] are labelled with a
Polygon Index= .
Determine whether Case A or B is applicable and compute the outer and the
inner envelopes of the region swept out by slack cone. All points in this region,
including the ones on the envelopes are given a Polygon Index = ¢. } end if }
end if } end for ©
As before, it can again be argued that this algorithm takes O(n®) time and produces as
many regions in the annulus with the property that any two points within a region have the same
Polygon Index. Note however, that in this case, these regions may not be disjoint, as it is
possible that the same point may be within the slack cone of several points on bd(P,,). For any
point v € [P,,-P,], there exists a Minimal Nested Polygon passing through v iff [|P(v)| = &
and hence this scheme identifies all points in the annulus that can be assumed to lie on some
Minimal Nested Polygon for P, and P,.

Recovery of Optimal Solutions: Finally, we address this issue by answering the
following question: once the two algorithms are over, given a point x € [P,-P,], how do we
determine if there exists a Minimal Nested Polygon passing through x, and if so, construct it.
To do this it should first be checked to see whether x lies in any of the different regions
produced by Algorithm Partition- || Tw) II whose label is ® - this can be performed in O(n®) time
for the entire annulus. If x does belong to one such region, then by drawing G(x), we can get
the required P*. If not, it remains to be checked if there is a P* with an edge passing through
x. To verify that, we then check if x belongs to any one of the O(n®) regions produced by
Algorithm - || P(v) || Suppose we find that x belongs to the region swept out by the slack cone
in the interval [E, F], as shown in figure 3. Then choose any point in [E, F] that is visible to x -

say y as shown in the figure. By drawing the G(y) we can find a P* that passes through x. If
x does not belong to the any of the O(n®) different regions produced by Algorithm-| P(v) |, then
there is no P* passing through x. Just as before, this can also be shown to take O(n®) time.

As this is a first pass at the problem, we have not attempted to investigate the possibility
of using advanced data structures to improve the time and space complexity of the two
algorithms and the recovery procedures - future work may address this issue. Another strand
of future research may be to investigate extensions of the algorithms to non-convex polygons.

30

Acknowledgement. The authors gratefully acknowledge the financial support provided

by NSERC and the Morris Hite Center at UT-Dallas.

References

[1] A. Aggarwal, H. Booth, J. O’Rourke, S. Suri and C.K. Yap, "Finding Minimal Convex
Nested Polygons", Information and Computation, Vol. 83, No. 1, (Oct. 1989), 98-110

2] V. Chandru, S.K. Ghosh, A. Maheshwari, V.T. Rajan, S.Saluja, "NC-Algorithms for
Minimum Link Path and Related Problems", Journal of Algorithms, Vol. 19, No. 2,
(1995),173-205.

[3] S. K. Ghosh and A. Maheshwari, "Optimal Algorithm For Computing Minimal Nested
Non-Convex Polygon", Information Processing Letters, 36 (1990), 277-280.

[4] S. K. Ghosh, "Computing The Visibility Polygon From A Convex Set and Related
Problems", Journal of Algorithms, 12 (1991) 75-95.

[5] S. Suriand J. O’Rourke, "Finding Minimal Nested Polygons", Tech. Report, The John
Hopkins University, (1985).

locus of Int(y)

Figure 2

