Enclosing &k points in the smallest axis parallel rectangle

Michael Segal and Klara Kedem*

Department of Mathematics and Computer Science
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

April 22, 1996

1 Introduction

Given a set S of n points in the plane, and given an integer k£, 7 < k < n, we want to find the
smallest axis parallel rectangle (smallest perimeter or smallest area) that encloses exactly & points
of 5. Aggarwal et al. [2] present an algorithm for this problem for any & < n, which runs in time
O(k?nlogn) and uses O(kn) space. Eppstein et al. [4] and Datta et al. [3] show that this problem
can be solved in O(k%n) time; the algorithm in [4] uses O(kn) space, while the algorithm in [3] uses
linear space. These algorithms are quite efficient for small & values, but become inefficient for large
k’s. The naive algorithm, for £ = n, will find the (only) rectangle in O(n) time.

We present an algorithm which is more efficient than the algorithms cited above for large &
values. It runs in time O(n+k(n —k)?) and uses linear space. Moreover, when k = 7 our algorithm
runs in O(n) time.

We extend our planar algorithm to find a minimum volume axis parallel box in 3-space that
contains k of n points from a point set S in the space. The 3d algorithm runs in time O(n + k(n —
k)2 4+ (n — k)®), and occupies O(n) space.

2 The Algorithms

In this section we present our algorithms for the planar and 3d problems. In Subsection 2.1 we
present an algorithm that finds the smallest enclosing rectangle that contains & z-consecutive
points of §. This algorithm is used as a subroutine in our following algorithms. In Subsection 2.2
we present our algorithm to the planar problem stated in the Introduction, and in Subsection 2.3
the 3d algorithm. We assume that the rectangle (box) is closed, i.e., some of the k points can be
on its boundary. We assume that all the points of S are in general position, meaning that no two
points have the same z (or y, or z) coordinate.

2.1 Enclosing k z-consecutive points

We do not want to sort S according to z, since this will immediately spend O(nlogn) time.
Therefore we use a partial order selection method, described in Aigner [1], which creates posets for
selecting the n — k largest elements (z coordinate order) in S. A poset is a partially ordered set of

*Work by Klara Kedem has been supported by a grant from the U.S.-Israeli Binational Science Foundation.

20




elements. Figure 2 below illustrates a poset S, where the largest n — k + 1 points are sorted and
the bottom k — 1 points are known to be smaller but are not sorted.

Let v denote the smallest point in the subset of the larger = coordinates. Denote by z(v) the z
coordinate of v. We are interested in the set of points R C § whose & coordinates are larger than

z(v).

n-k
points

k-1
points

Figure 1: A poset

We describe how to find the poset R. We set a knock-out tournament as described in [1].
Assuming 7 is a power of 2 we put all the points of S in the leaves of a tree and compare them
by pairs. As in a knock-out tennis tournament we determine the winner of each pair, put it in the
parent node of the pair and repeat the process for this level: pair winners again and copy the winner
of this stage to the parent level, and so on. The best player in the tournament, w, is determined
by n — 1 games and is at the root — zero level of the tree. We report w as the largest found and
take it out of the tournament (put it in R). Take w’s opponent from the first level in the tree and
compare it to each of w’s opponents along the path that w climbed up to the top (going from the
root down to the leaf). After at most [logn] — 1 games the second best player s is determined and
reported (in R). Note that the third best player must have lost to the second best by this set-up.
Hence the highest opponent of s now plays against all of s’s opponents on the path that moved s to
the top. It is immediately seen that in the worst case we need no more than [log(n—1)] — 1 games
to move the 3rd best player up to the top. Continuing in this way, we have collected the n — &
largest elements in S into an oredered set R, in time O(k + T, ,[logi]) < O(k + (n — k)logn).

We have R, the z-ordered subset of n — k points of S with the largest = coordinates. Let
L =S — R. We know v — the point with the largest z coordinate in L.

We perform three similar tournaments on L, but to a smaller extent. We find the point with
the smallest y coordinate among the points in L, using the knockout strategy and resulting with a
full binary tree K; (with k leaves) which stores the y coordinates of the points of L in the leaves,
and the results of the intermediate tournaments in the inner nodes. Denote by ming the winner
in K. Similarly, we construct a tournament tree I for finding the largest y coordinate, mazf .
We repeat this for finding the smallest z coordinate, mink, building a tournament tree D. K, and
D are also trees of k leaves each. Notice that mazf = z(v). We create an array U with n entries,
an entry for each point p; € S. Each entry contains two pointers, one to the location of p; in A
(assigned to be nil if p; is not in Kj), and the other pointer for the location of p; in K (or nil).

Finding a rectangle

We slide a sweepline from left to right, starting at the leftmost point 7 of S. At this point we

compute the perimeter (area) of the rectangle defined by minL, mazk, minl and mazl. The next

21




event is to slide the sweepline to the next leftmost point of S (r is deleted from L, and v;, the
smallest point of R, is inserted into L) so that L always contains k points. The new mazl equals
z(v;) and is found in time O(1). The next leftmost point in $ is found using the tournament step
of finding the second winner in D. This is the new minl. Finding the next leftmost point in D
takes log & — 1 comparisons.

We update the tournament trees K; and K, according to the deletion of the first point and the
insertion of v;. There are few possibilities:

1. The y coordinate of the deleted point r is not equal to min5 or ma:rf,.

o If y(v1) < ming, where mzn5 = y(pi), for some point p; € L, then we replace in K; the
value y(p;) by y(v1)-

o If y(vy) > mazi‘ attained at some point p; € L, then we replace in K, the value y(p;)
by y(v1).

o If minl = y(p;) < y(v1) < y(p;) = mazL then find the location of the deleted point r
in K; and K> and replace it in both trees by y(v;)).

We update the tree K and the array U as follows: Using U we find the leaf containing y(r)
in K1, replace it by y(v1), and moving from this leaf to the root of K, we compare y(v;) with
the values in the adjacent nodes along the path and update K; accordingly. This step takes
O(logk) time. We update U in time O(1). We put the pointer to K that was in entry 7 of
U as the pointer to A for entry v; in U. We put nilin the entry of r in U. Symmetrically
we update K> and the pointers to K5 in U.

2. The y coordinate of the deleted point r is equal to minf} or maré. Say, wlog, to minﬁ.

We find the second smallest y value in A as we did in the previous step; we put y(v;) into
the leaf of A’; just vacated by miné‘; and update the tree and U accordingly (as in step 1).

Notice that we do not need to update D at all. This procedure is repeated n — k times. Hence
the total time involved in updates in O((n — k)logk).

The construction of U takes O(n) time. The initial construction of K, K7 and D, is performed
in total time of O((k — 1) + (logk — 1) + (log(k — 1) — 1) + ...(log(k — n + k — 2) — 1)), which
(substituting the first k in each log term by n) is < O(EZ%,,,[logi]) < O(k + (n — k)logn).

Summing up the runtimes of the updates and constructing the trees, we get

Theorem 2.1 The smallest perimeter (area) rectangle that contains a given number k of z-consecutive
points in a set of n points in the plane, can be found in time O(n + (n — k)log (kn)).

2.2 The smallest rectangle containing k arbitrary points

To avoid tedious notations we assume that the names of the points correspond to their z-ordering,
though this does not mean that the points are sorted. In general the outline of our algorithm is as
follows: initially we fix the leftmost point of the rectangle to be the leftmost point of 5. At the
next stage the leftmost point of the rectangle is fixed to be the second left point of S, etc. Within
one stage, of a fixed leftmost rectangle point, r, we pick the rightmost point of the rectangle to be
the ¢’th = consecutive point of S, for g = k+7—1,...,n. For fixed r and ¢ the z boundaries of the
rectangle are fixed, and we go over a small number of possibilities to choose the upper and lower
boundaries of the rectangle so that it encloses k points.

22




In more detail, we initially produce the posets R, D, K; and K and the array U, as in the
former algorithm. We use them as before but with a slight modification to the maintenance of
K, and K, as we describe below. We will also use two auxiliary sorted lists A; and A; that are
initially set to be empty. They will collect the information found throughout the algorithm, of the
lowest points (mzné’) and highest points (mazg’), respectively, plus pointers to the leaves in K
and K, containing these points (nil as a pointer if the point is not the corresponding tree). The
maximum size of A; and As is 2(n — k) as will be seen below. Since the lists are short we can
afford O(n — k) time update operation on them (search, insert, delete). As before, D and R are
not updated throughout the algorithm, and U’s updates are done in 0(1) time.

For the initial rectangle (say 7 = 1 and ¢ = k) we compute the perimeter (area) of the rectangle
by the initial mink, mazL, minl and mazl. The point that attains mink (mazg) is stored as the
first element in A; (Az).

For the next step, ¢ = k + 1, the vertical slab between r and ¢ contains the first K + 1 z-
consecutive points. Trivially there are two rectangles containing k of these points within this slab:
(1) The second smallest (y) in K (store it in A;) and the first largest in Ko, and (2) The first
smallest (y) in K and the second largest in K (store it in Az).

For each stage (r) we use the tree D to find the next smallest point 7 in . We go over all the
steps within this stage, varying ¢ (found in R) as above and finding the smallest rectangle that
contains k points in the vertical slab determined by r and g.

As we go over the rectangles containing k points in the fixed vertical slab we add the newly
found points with smallest (largest) y coordinates to A; (Az) sorted by their y-value.

Not all these possibilities yield feasible rectangles. See. e.g., in Figure 2, where the rectangle
determined by r and ¢ contains k£ points that do not include g. But the infeasible rectangles are
dealt with either in a previous step or in a subsequent step.

‘,

k points “I
i®

L J

Figure 2: A rectangle with & points was dealt with in step ¢’

The main differences between the maintenance of K; and K in this algorithm and the former
are as follows. At the beginning of each stage r, the vertical slab determined by 7 and by ¢ = r+k—1
contains & points in K and K. As we take the next right point ¢, we add points to A7. We will
show below though, that the trees K; and A’; remain of size k, but they undergo changes as ¢
changes.

However, at the beginning of the next stage v’ = r+1, ¢’ = ¢+ 1, the new trees K; and K will
differ from the ones at the beginning of the former stage only by the deletion of r and insertion
of ¢’. So we keep copies of these initial trees at stage r and update them by these two points to
obtain the initial trees for stage 7+ 1. Similarly, we have to keep a copy of the initial array U, and
update it as we did above, for the deleted 7 and added ¢’. We initialize A; and A to be empty at
the beginning of the whole process. We add points to A; and A; throughout all the (n — k) steps
of stage r = 1. At the beginning of each stage 7’ = r + 1 we delete from A; and A; the point 7.

23




Assuming we have the initial trees, array and lists at the beginning ol stage r and ¢ = r+£— 1.
For the next z-consecutive point ¢ we do the following

Updating K; and A,

If y(¢) > max(y) in A, for the entries in A; for which the pointer to K is not nil, then
we skip to the next g. This is because y(g) will never be reached to act as minf; in the slab
defined by r and ¢. We find the point with max(y) in A2 by going over all its (< n — k)
entries.

If y(¢) < max(y) in A for the entries in A3 for which the pointer to K is not nil, then we can
delete the point p; which attains max(y) from K7 and put the point g instead of it, updating
the path to the root (in O(log(k) time). (as in the former case p; will not participate as a
lower y boundary of a rectangle in this slab.) We put nilin the pointer assigned to K, in As,
for the entry p; (O(n — k) time).

Symmetrically we deal with K and A;.
Summarizing the runtime of our algorithm we get:

Computing R: O(k + Z ., ,[logi]) = O(k + (n — k)logn)
Initially producing U: O(n).

Copying trees K; and K2 and U and initially updating them per each stage is dominated by
the latter: O(n). For all stages O(n(n —k)).

Total time for updating K, K5, A; and A,, for all the steps in one stage: O((n — k)((n —
k) +1logk). O((n — k)?logk + (n — k)*) for all stages.

The number of possible rectangles at each stage: Z?;lk(j +1) = O((n — k)?). Knowing 4,
and A, we invest O(1) time in computing the area (perimeter) of each rectangle. The number
of possible rectangles at all stages: O((n — k)*).

Since k > n/2 some of the above summands can be neglected we yield

Theorem 2.2 The smallest perimeter (area) rectangle that contains a given number k of points
from a set of n points in the plane, can be found in time O(n + k(n — k)?) and O(n) space.

2.3

The smallest box containing k& arbitrary points in 3d-space

We extend the planar algorithm to the smallest box containing k£ points in the space. We project
S on the z,y plane, call this planar set 5.

1.

2.

We use the planar algorithm to find all the rectangles on the z,y plane that contain k,k +
1,...,n points of 5;. In essence we do the following: ’

For each rectangle found in the former step use the z axis to bound exactly k points of S in
a 3d box defined by the z,y rectangle and a segment on the z axis.

24




(The whole process will be later repeated similarly for the z, 2z plane and a segment in the y
axis and for the y, z plane and z axis.)

During the planar algorithm we encounter rectangles with &, £+ 1,...,n points of 57 in them.
We construct additional tournament trees C1 and C; for the 2 axis (similar to K and K3). Initially,
for each vertical slab in the planar algorithm, the trees store the k& minimal (maximal) values of
the z-coordinates of the points projected in the rectangle. Similary to the arrays A; and A; in
the planar algorithm, we construct and maintain two arrays T; and T, that save the points in
increasing (decreasing) z order, that have been found during the algorithm. The vector U will now
contain four fields per entry (for K7, K»,C1,C2). The new data structures are updated when the
planar data structures are updated, and their update time is as for the corresponding planar data
structures. For each rectangle generated in step 1 above, we go over the (length n — k) arrays, Ty
and T, and compute all the boxes determined by the z delimiter in O(1) time per box.

Assume that we are at step m of stage r of the planar algorithm. There are K=k+m-r2>k
points of S; in the slab defined by r and m. We go over all the rectangles with k,..., &’ points in
this slab. In the z dimension we perform an identical updating scheme as for the y direction in the
planar algorithm, updating C1,C3,T1,T2 and U accordingly. The number of planar rectangles in
one step is bounded by (n — k)?, and in axis z by (n — k), totalling in (n — k)® boxes per step.

As in the planar algorithm we check for consistency of the boundaries of the boxes This is done
in constant time per box. We have n — k stages with at most n — k steps, so the running time of
this algorithm is O(k + k(n — k)% + (n — k)®).

Remark

The same technique works when we have to deal with Lo, metrics. For example, an algorithm
for finding the minimum L diameter for a k—point subset of a set of n points in the plane is
described in [4] and runs in time O(nlog?n). Using the assumption that k& > 3 this algorithm
can be improved to run O(nlognlog(n — k)) time. They [4] used an O(nlogn) time algorithm
for placing a fixed-size axis-aligned hypercube and then applied the technique of sorted matrices
described in [5]. Actually, we need not keep all the O(n?) distances along each coordinate axis
in the matrix, but only O((n — k)?) (points that will be used as boundaries). Searching over this
matrix adds a factor of O(log(n — k)) and not O(logn) as in [4].

References

[1] Martin Aigner, Combinatorical search, Wiley-Teubner Series in CS, John Wiley and Soms.
1988.

[2] A. Aggarwal, H. Imai, N. Katoh, S. Suri, Finding k points with minimum diameter and related
problems, Journal of algorithms, 12, 38-56, (1991).

[3] A. Datta. H.-P. Lenhof, C. Schwarz, M. Smid, Static and dynamic algorithms for k-point
clustering problems , In Proc. 3rd Workshop Algorithms Data Struct., pp. 265-276. Lecture
Notes in Computer Science, vol.709. Springer-Verlag, New York, 1993.

[4] D. Eppstein, J. Erickson, Iterated nearest neighbors and finding minimal polytopes, Discrete
Comput. Geom., 11, 321-350, (1994).

[5] G. Frederickson, D. Johnson, Generalized selection and ranking: sorted matrices, SIAM J.
Comput. 13, 14-30, (1984).

25




