Convex hulls of bounded curvature
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Abstract

In this paper, we consider the problem of computing a
convex hull of bounded curvature of a set S of points in
the plane, i.e. a set containing S and whose boundary
is a curve of bounded curvature of minimal length. We
prove that, if the radius of the smallest disk that contains
S is greater than 1, such a hull is unique. We show that
the computation of a convex hull of bounded curvature
reduces to convex programming or to solving a set of
algebraic systems.

1 Introduction

The convex hull of a set of points in the plane is defined
as the smallest set, or equivalently, the set of smallest
perimeter that contains all the points. We consider in
this paper convex hulls of bounded curvature. A curve is
said of bounded curvature if it is C* and if its curvature is
upper bounded by 1 everywhere it is defined. We define
a convex hull of bounded curvature of a set S of points
in the plane as a set containing S and whose boundary
is a curve of bounded curvature of minimal length.

Convex sets of bounded curvature have been con-
sidered in the context of non-holonomic motion plan-
ning [ART95, BL96] but we are not aware of any previous
work devoted to the construction of such hulls.

In the sequel, the boundary of a region R will be de-
noted by OR. A polygon whose vertices are M;,..., M,
such that Mi,..., M, appear in this order on the
boundary of the polygon will simply be called polygon
M ... M,. When necessary, the suffix ¢ of a vertex M; of
a polygon M; ... M, will be considered modulo n. Two
polygons are said to be geometrically equal if they define
the same region; notice that two polygons that are geo-
metrically equal have the same non-flat vertices but may
have different flat vertices.

In the sequel, S denotes a set of points in the plane, 7
a convex hull of bounded curvature of S. P is the usual
convex hull of S and P4,..., P, denote the vertices of
P. D, denotes the closed disk of unit radius centered
at P;, for any 7 € {1,...,n}. Q is a polygonal region
whose perimeter is minimal and that intersects all the
disks D, ..., D, (observe that it is not required that the
boundary of Q intersects all the disks Dy,...,D,). As
we will see, Q plays a central role in the characterization
and in the computation of 7.
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If the radius r of the smallest disk that contains S is
smaller or equal to 1, any disk of unit radius containing
S is plainly a convex hull of bounded curvature of S.
Notice that if 7 < 1 there exists an infinite number of
such disks, and, if r 1 such a disk is unique. We
assume in the sequel that r > 1.

2 Properties of T

Lemma 1 7 is convez and contains P.

Proof: 7 is convex because otherwise its convex hull has
shorter perimeter and its boundary is a curve of bounded
curvature. Thus, 7 contains P because P is the smallest
convex that contains S. a

We easily deduce from this lemma that the convex hull
of bounded curvature of S is equal to the convex hull of
bounded curvature of the vertices of the convex hull of
S.

Lemma 2 97 consists of line segments and arcs of unit
circles passing through the vertices of P.

Proof: Since the radius of the smallest disk that con-
tains S is strictly greater than 1, 07 is not reduced
to a unit circle and passes through some points of S,
which, by the remark above, are vertices of P. Let S’ be
the set of vertices of P. Clearly, any arc of 87 joining
two oriented points (4,a) and (B, ) in IR? \ S’ is a lo-
cally shortest path of bounded curvature! joining these
two oriented points. Then, according to [BCL94] and
[PBGM62, Theorem.25), any arc of 87 in IR? \ &' is a
curve C! of one of the two types CSC or CCC where
C denotes a unit circular arc and S a line segment. The
paths of type CCC cannot appear in 07 because 07
is convex. Thus, any circular arc that appears in 97 is
followed and preceded by a line segment and must pass
through a vertex of P.

O

Notice that not all the vertices of P necessarily belong
to 87 : Figure 1 shows 87 when P is a square; when we
add to P a fifth vertex A that belongs to 7, 7 is still the
convex hull of bounded curvature of these five vertices
yet not all five vertices belong to 07 .

Now, we transform the problem of computing 7 into a
more standard problem in Euclidean geometry (see Fig-
ure 1) :

1A curve C is a locally shortest path of bounded curvature join-
ing (A, @) and (B, B) if and only if any curve of bounded curva-
ture joining (A, «) and (B, B) and contained in a sufficiently small
neighborhood of C is longer than C.




Figure 1: Example where not all the vertices of P belong
to 0T

Proposition 3 T is the Minkowski sum of the disk of
unit radius centered at the origin and of a polygonal re-
gion Q* which is, among the regions that intersect all
the disks D1,..., Dy, one whose perimeter is minimal.

Proof: First, notice that, since 7 is convex, the sum
of the lengths of the circular arcs of 07 is equal to 2.
Hence, the perimeter of 7 is equal to 27 plus the sum of
the lengths of the line segments of 07 .

We recall that the eroded region of 7 by the unit
disk D centered at the origin is (7° @ D)° where ".©"
denotes the complementation and & the Minkowski
sum. In other words, the eroded region of 7 by D is
T \ Upecar D(P) where D(P) is the translated of D cen-
tered at P. Let Q* denote the eroded region of 7 by
D.

As 97T is convex and of bounded curvature, Q* is con-
vex, non empty and the Minkowski sum of @* and D is
equal to 7. Moreover, as T contains P, Q" intersects
all the disks Dy, ..., D,. The perimeter of 7 is equal to
27 plus the perimeter of Q*. Thus, Q* is, among the re-
gions that intersect all the disks D;,..., D, one whose
perimeter is minimal. ]

Let Q denote a polygonal region of minimal perimeter
that intersects all the disks Dy,...,D,. We will prove
some properties of Q in Section 3 and show in Section 4
that Q is unique and therefore equal to Q*.

3 Properties of Q

Lemma 4 Q is convez.

Proof: Q is convex because, otherwise, its convex hull
has a perimeter strictly smaller than the one of Q and
its convex hull still intersects all the disks D;,...,D,
and still has a bounded curvature; that contradicts the
definition of Q. =]

Lemma 5 Q CP.

Proof: Assume for a contradiction that Q@ € P. The
idea of the proof is to project the part of Q outside P
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onto P. Notice that we cannot simply replace the part
of Q that is outside P by an arc of P because the
resulting polygon may possibly not intersect all the disks
D,,...,D, (see Figure 2a).

Precisely, each point of Q outside P is projected onto
the closest point of 3P (see Figure 2b). That transfor-
mation shortens Q. Moreover, each point of Q that be-
longs to a disk D; is projected onto a point that belongs
to the same disk because P is convex. Thus, the trans-
formed polygon still intersects all the disks Dy, ..., Dyp.
As the perimeter of Q is minimal, we have a contradic-
tion. O

Figure 2: For the proof of Lemma 5

Lemma 6 9Q intersects all the disks Dy,...,Dy.

Proof: Assume for a contradiction that Q does not
intersect a disk D;,. As, by hypothesis, Q@ N D;, is
not empty, P;, belongs to the interior of Q. Thus, by
Lemma 5, P;, belongs to the interior of 7 which contra-
dicts the hypothesis that P;; is a vertex of P. O

Proposition 7 There ezists My € Di,...,M} € D,
such that the polygon My ... M. is geometrically equal
to the polygon Q.

Proof: By Lemma 6, there exists M; € D; N 0Q, Vi €
{1,...,n}.

If the points M, ..., M, appear in this order on 09,
we take M} = M; (Vi € {1,...,n}). The polygon
M} ... M} is geometrically equal to Q. Indeed, as Q is
convex and M} € 8Q, the polygon My ... M, is convex
and included in Q. Thus, the perimeter of the polygon
M} ... M} is not greater than the perimeter of Q, and it
intersects all the disks Ds,..., D, (because M} € D;).
As, by definition, Q is a polygon intersecting all the disks
D,,...,D, whose perimeter is minimal, Q is geometri-
cally equal to the polygon My ... M.

If the points Mj,..., M, do not appear in this order
on 8Q, let M/ be the intersection point between 0Q
and the line segment P;M; which is the closest from P;
(see Figure 3). By construction, M € D; and the line
segment P; M! does not intersect the interior of Q.




Figure 3: For the proof of Lemma 7

If the points My, ..., M) appear in this order on 89,
by the same argument as above, the polygon Mj ... M]
is geometrically equal to Q. Otherwise, there exist two
consecutive points M; and M on 9Q such that the line
segments P;M] and P;M; intersect®, because the seg-
ments Py M],...,P,M] belong to P (P is convex and
contains Q) and do not intersect the interior of Q. The
two segments P;M; and P;M] can intersect only if M or
M J’ belongs to the intersection between the two disks D;
and D; (see Figure 4a). We assume, without loss of gen-
erality, that M; € D; N D;. We then define M} = M.
The number of intersection points between the segments
P Mj,...,P, M, decreases by 1 when we replace M by
M} = M; (see Figure 4b) : actually, on one hand, the
segments P;M] and P; M do not intersect contrary to
the segments P;M; and P;M}; on the other hand, the
"new" segment P; M}’ can only be intersected by a seg-
ment intersecting the "old" segment P; M (because M;
and M are consecutive on Q). Furthermore, we claim
that the line segment P; M does not intersect the inte-
rior of Q. Indeed (see Figure 4c), let H; be the union of
the two half-planes limited by the edges of @ incident to
M] that do not contain Q. Let H{ be the complemen-
tary of H;. By construction, P;M; does not intersect
the interior of Q, thus P,M; C H;. If P; M intersects
the interior of Q, P; € Hf and so P;M; C H{. Then
P,M; N P;M; = 0, which contradicts our assumption
and proves the claim.

Repeating this procedure for all the pairs of con-
secutive points on 9Q such that the corresponding
line segments intersect, we define a list of points
My, ..., M} that belong to 0Q such that the segments
P MY, ..., P,M}; do not pairwise intersect and do not
intersect the interior of Q.

The fact that the segments P, M7, ..., P, M} do not
pairwise intersect, are included in P and do not intersect
the interior of Q, implies that the points M7y,..., M
appear in this order on Q. By the same argument as
above, the polygon M7 ... M is geometrically equal to
Q. o

Remark 8 The points M7,..., M may not be unique.

2We say that two line segments intersect if their relative interior
intersect.
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Figure 4: For the proof of Proposition 7

For example in Figure 1, the number of non-flat vertices
of Q is smaller than the number of vertices of P. In that
case, one of the M} is a flat vertex of Q and moving M}
inside D; along 8Q does not modify 9Q.

Proposition 9 If M} € Dy,...,M; € D, are the ver-
tices of a polygon geometrically equal to Q, then, for any
non-flat® vertez M},

o M} belongs to the boundary of D;,

o the segments M M} and M; M}, , do not intersect
the interior of D;,

o the line P;M; is the bisector of the two lines
M} M} and MM}, , that separates M; , and

i+1°

Proof: The first claim of the proposition is a direct
consequence of the second one.

Let M be a non-flat vertex of Q. As M} is not
flat, the line segment M ;M7 , does not intersect
D;. As the perimeter of Q is minimal, the polygo-
nal line M} ,M!M}, , is, among the polygonal lines
M} MM}, such that M € D;, one of smallest length.
The set of points M such that the length of the polyg-
onal line M MM/, is equal to a given [ is an ellipse
whose focuses are M ; and M, ;. It follows that M}
is the common point of D; and the ellipse whose focuses
are M;_, and M} , that is tangent to D; and does not
enclose D; (see Figure 5). This proves the second claim

of the proposition.

3If Q is reduced to a point, M} = M for all (3,5) and we
consider the vertices M} as flat, by convention.




A well known property of the ellipses is that the nor-
mal line to an ellipse at a point M is the bisector of
the two lines M} ; M and M M, that separates the fo-
cuses. In our case, the normal to the ellipse at the point
M} is also normal to the boundary of D; and so passes
through P;. Therefore, P;M} is the bisector of the two
lines M} M} and MM}, , that separates M ; and

M‘ztk-l‘ o

Figure 5: P; M} is the bisector of the two lines M} ; M}
and M; M}, , that separates M, and M},

4 Uniqueness of @ and of T

We define the following function f :

- IR
|| My M| + || MaMs]| + ...
+|Mn—1 Mal| + || M7 M, ||

f: Dix...xD,
M,....,M,

-

where ||M;M;+1|| denotes the Euclidean distance be-
tween the points M; and M;,;.

Proposition 10 f is a convez function.

Proof: A simple computation, omitted here, yields the
proposition. ]

Proposition 11 f(Mf7,..., M}) is the minimum of f if
and only if the polygon M} ... M} is, among the regions
that intersect all the disks Dq,...,D,, one of minimal
perimeter.

Proof: Let My ... M} be such that f(M{,..., M) is
minimum. Let Q be a polygon of minimal perimeter
that intersects all the disks D;,...,D,. Clearly, the
perimeter of Q is smaller or equal to the perimeter of
the polygon M7 ... M. By Proposition 7, Q is geomet-
rically equal to a polygon My ... M} where M} € D;.
As f(M},..., M}) cannot be smaller than the minimum
of f, f(M},...,M}), which is equal to the perimeter of
Q, is also equal to f(M7,...,M}), which is equal to the
perimeter of the polygon M7 ... M.

Conversely, if f(M;, ..., M,) is not the minimum of f,
the perimeter of the polygon Mj ... M, is not minimum
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among the regions that intersect all the disks D,, ..., Dy.
]

Lemma 12 Let 0; be the angle /(P;P;_iP;M;) where
M; is a point of the boundary of D; and let U; C [0,27]
be the set of the 0; such that M; € P (1<i<mn). Letg
be

- IR
| M1 M| + || M2 M| + ...
+[Mp—1 My|| + || Mn M|

g: Ui x...xU,
61,...,6,

—

and let D C [0,27]™ be the open set of the © =
(61,...,6,) € Uy x ... x U, such that the polygon
M ... M, does not intersect the interior of the disks
Ds,...,D,.

Then, g is locally strictly conver on D, i.e. for any
© € D, there ezists an open neighborhood of © such
that the restriction of g on this neighborhood is a strictly
convez function.

Remark 13 g is not convex on D because it can be
shown that D is not a convex set. Notice that © € D if
and only if the polygon M; ... M, does not intersect the
interior of the disks Dy, ..., D, and if the edge M;M;1
is neither tangent to D; nor to D;41, Vi € {1,...,n}.

Proof: We consider the function

- R
| MMy ||

gi : Ui X UH.]_

6:,0i41 —
We show by computing the Hessian matrix of g; that g;
is locally strictly convex at any point (6;,6;+1) such that
the relative interior of the line segment M; M, does not
intersect (and is not tangent to) D; and D;4,. It follows
that §; is locally strictly convex on the projection D; of
D onto U; x U;4+1. We omit here these computations.
Let g; be the function

g : Ui x...xU, - R
91,...,9n = |!MiMi+1”.

Since g = Y, <;<n 9i> the fact that g; is locally strictly
convex on D; implies that g is locally strictly convex on
D. O

Proposition 14 Q is unique.

Proof: Let Q be a polygon of minimal perimeter that
intersects all the disks D;,...,D,. Since the radius of
the smallest disk that contains S is strictly greater than
1, Ni<i<nD;i = 0; therefore, Q is not reduced to a point.
By Proposition 7, Q is geometrically equal to a polygon
My ... M} such that M} € D;, Vie {1,...,n}.
Let M},..., MZ’: be the non-flat vertices of Q@ and let
U be the set of all the polygons that intersect the g disks
D;, - iDg,:

The proof consists of three steps : first, we show that
the polygon M ...M; is, among the polygons of U,




one of minimal perimeter. Secondly, we show that there
exists a unique polygon of ¢ of minimal perimeter. In a
third step, we consider the n disks D, . ..,Dn.

1) In order to show that the polygon M M ois a
polygon of U of minimal perimeter, we ﬁrst show that
any perturbation of a vertex M:; +; that keeps M} inside
D;; strictly increases the perimeter of the polygon

Let & (resp &) be the ellipse whose focuses are
M., and M}, (resp. M;_, and M, ) that con-
tains M7 (see Flgure 6). As Q is a polygon of minimal
penmeter by the proof of Proposition 9, &; is tangent
to D;; at M; i; and lies outside D;,. Moreover, the line
L normal to &; at M * is the blsector of the two line
segments M M _, and M; M, that separates M; i3=1
and M7 ;. ince M; 1 and M ~+1 are flat vertices they
belong t0 the line segments M; - M ;_, and M ML
spectively. It follows that the 11ne normal to 82 at M * is
L, which implies that £, is tangent to &; and to D;; at
M} . Furthermore, &; is plamly inside &;, which 1mphes
that &, lies outside D;;

Figure 6: For the proof of Proposition 14

Hence, VM € D;; such that M # M, , M belongs
to the open region outs1de the elhpse & and therefore,

M5, M| + | MM, | > ||, M+ M M-
Therefore any perturbation of a vertex M, that keeps

M ;, inside D,
po]ygon M q

1t follows that (M,
of the function

f:

strictly increases the per1meter of the

*

-, M) realizes a local minimum

R
”MnMiz H +oo
My, M, || + || M, M, |

Dil X ...
Mi,...,

X Di,,
M

q

—
—

Indeed, let @ € IR®™ be a sufficiently small vector
such that (M,.. M)+ @ € Dy x...xD;,. The
vector ¥ is the sum of g vectors (...,0, @;,,0,...) €
IR? x ... x IR? such that M} +;; € D;;. Let Df(M*)
be the dlfferentlal at M* = (M * M;; ). As shown
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above, Df(M*). (..,0, u,J, ..) > 0. It follows that

Df(M*) Z > 0. As f is convex (see Lemma 10) the
claim i is proved.
As f is convex, f(

mum of f. Therefore, by Proposition 11, the polygon
M ... M; is, among the polygons of U, one of minimal
penmeter

2) We now show that there is only one polygon in U of
minimal perimeter. As f is convex, the set of points for
which the function f is minimum is connected. Thus,
in order to prove the uniqueness of the polygon, it is
suﬁic1ent to show that there emsts an open neighborhood
of (M, M) such that (M, -, M) is the only

point of that neighborhood for which the function f is
minimum.

For any point (M;,,... ,M;,) in a sufficiently small
neighborhood of (M}, ..., M} "), the polygon M;;, . .M,
does not have any ﬂat vertex since the polygon
M. .. M does not have any. Thus, by Proposmons 9

M,

(2

) is the global mini-

11,...

117 = 117

a.nd 11, the function f is minimum at (Miy,..., M)
only if each vertex M;. belongs to the bounda.ry C of
D;,. Therefore, in order to prove that there ex1sts a
unique polygon of minimal perimeter in U, 1t is sufficient

to show that for any (M;,,..., M; ) # (M, o M) in
Ciy X...xC;, and in a suﬂic1ently small nelghborhood
of (M,. M*) f(M“, )>f( g M*)
Slmllarly as in Lemma. 12 let 6;; be the an-
gle A( ,J . P, ) and let o3, be the angle
L(PyP;_ 1P M*) Let U;; be the set of 6;, such that
M;; belongs to the polygon 1'5‘,1 - P,‘7 Let D be the

open set of the (6;,,...,0;,) € U,
the interior of the polygon Mz .

. X U;, such that
M iq does not intersect

the circles C;, ...,C;, . Let g be
g: Uyx...xU;, - R
il,...,e,-q — ”M,lMiz”-l-...
+HIMi,_, M || + (| Ms, M, ||

As shown above, the polygon M ..M is of minimal
perimeter among the regions tha,t 1ntersect the disks
D;,,...,D;,. By Lemma 5, (o 6;) € Uy x...xU;,

and, as the polygon M; . M does ‘ot have any flat
vertex, (07 ,. 0;) € D by Propos1t10n 9. Thus, by

Lemma 12, g is locally strictly convex at 6z, ..,qu).
As f(M, i>+++» M) is the minimum of f, it is the mini-

mum of the restriction of f to C, - x C;, and there-
fore g(6;,,. 6 ) is the m1n1mum of g. Thus for any
(6, - ,q) ,+- (9z y1--+» 0 ) in a sufficiently small nelgh-
borhood of (67,.. zq), 9(6s,,...,6;,) > g(ﬂu, )
Hence, for any (M, M) #F (M. M*)
Ciy x ... x C;, and in a sufficiently sma.ll nelghbor-
hood of (M:;, .., M), the perimeter of the polygon
M, ..

-M;, is stnctly greater than the perimeter of the
polygon M} -M; . This shows that the polygon of min-
imal penmeter that intersects the ¢ disks D;,,...,D; i, 18
unique.




3)Let Q' be a polygon intersecting all the disks

D,,...,D, and whose perimeter is minimal. We show
that @' = Q. Plainly, Q' intersects the g disks
Di,,...,D;,. As shown above, the polygon of mini-

mal perimeter that intersects the ¢ disks D;,,...,D;,
is unique and equal to Q. Thus, either Q' = Q or the
perimeter of Q' is strictly greater than the one of Q. As
the perimeters of Q' and of Q are equal, Q' = Q. |

Propositions 3 and 14 yield the following proposition :

Proposition 15 7 is unique.

5 Results and algorithms

We sum up the results of Propositions 3, 10, 11, 14 and
15 in the following theorem :

Theorem 16 Let S be a finite set of points such that
the radius of the smallest disk that contains S is strictly
greater than 1. Let P = Py,...,P, be its convez hull
and Dy,...,D, the closed disks of unit radius centered
at Pi,...,P,. S has a unique convez hull of bounded cur-
vature of which is equal to the Minkowski sum of the disk
of unit radius centered at the origin and of any polygon
M3 ... M} such that f(Ms,..., M) is the minimum of
the convez function
f: - R

| M1 Ma|| + || MaMs]| + ...
+|| M1 Mn|| + || Mn M|

D, X ...x Dy
My,...,M,

=

According to Theorem 16, the main problem in com-
puting 7 is the computation of a point for which the
function f is minimum. The minimization of f can be
viewed as the minimization of the function :

F: R’x...xR?
My,..., M,

- R
[| My M| + || Mo Ms|| + ...
+||Mp—1 My || + || Mn M|

—

under the n constraints M; € D;, 1 < i < n. Interior
point algorithms can be used to compute, in polynomial
time, a point that approximate the minimum of F' under
these constraints (see [NN94]).

We can also compute Q exactly : if Mi*l,...,Mi‘;
are the non-flat vertices of @ , then, by Proposition 9,
(M;,... ,M{;) is a solution of the system

MMy MM V58 =0
”MijMij—1” “MijMij+1” uen
Mij (3 Cij

i; G{il,...,iq}g{l,...,n}

That system can be transformed into an algebraic sys-
tem of g equations (of degree 6) in ¢ indeterminates
tan(6;;/2) (j € {i1,...,1,}) where 6;; is the polar angle
of P;M;. Then, (M,... ,M;) is, among all the solu-
tions of the system, the one for which the perimeter of
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the polygon M, ... M} is minimal. That system can be

solved in time O(29(™) (see [LL91]).

By considering all the possible sets of suffix
{i1,--.,%q} € {1,...,n} (¢ € {1,...,n}) we can com-
pute the solution (M;,..., M; ) such that the polygon
M M;“I intersects all the disks Ds,...,D, and for
which the perimeter is minimal. Hence, we can compute
the convex hull of bounded curvature of n points in ex-

ponential time in n.

6 Open questions

The work reported here raises many questions. We men-
tion a few of them we plan to consider in near future :
Does there exists a polynomial time algorithm for this
problem? Can these results be generalized to higher di-
mensions? Can similar results be obtained for convex
hulls of bounded curvature and of minimal area? Can
similar results be obtained for convex hulls whose bound-
aries are curves C? for which the derivative of the curva-
ture is bounded?
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