Efficient Algorithms for Counting and Reporting Pairwise Intersections
between Convex Polygons

Prosenjit Gupta*!

Abstract

Let S be a set of convex polygons in the plane
with a total of n vertices, where a polygon
consists of the boundary as well as the inte-
rior. Efficient algorithms are presented for the
problem of reporting output-sensitively (resp.
counting) the I pairs of polygons that inter-
sect. The algorithm for the reporting (resp.
counting) problem runs in time O(n*/3%¢ + I)
(resp. O(n*/3+*¢)), where ¢ > 0 is an arbitrar-
ily small constant. This result is based on an
interesting characterization of the intersection
of two convex polygons in terms of the inter-
section of certain trapezoids from their trape-
zoidal decomposition. Also given is an alter-
native solution to the reporting problem, which
runs in O(n?/310g°® n + I) time, and is based
on characterizing the intersection of two con-
vex polygons via the intersection of their up-
per and lower chains and their leftmost vertices.
The problems are interesting and challenging
because the output size, I, can be much smaller
than the total number of intersections between
the boundaries of the polygons and because the
number of polygons and their sizes can depend
on n.

*The research of these authors was supported in part
by NSF grant CCR-92-00270.

t Max-Planck-Institut fiir Informatik, Im Stadt-
wald, D-66123 Saarbriicken, Germany. E-mail:
pguptalmpi-sb.mpg.de.

¥ Department of Computer Science, University of
Minnesota, Minneapolis, MN 55455, U.S.A. E-mail:
janardan@cs.umn.edu. Also supported in part by a
Grant-in-Aid of Research from the Graduate School of
the University of Minnesota.

§Department of Computer Science, King’s College
London, Strand, London WC2R 2LS, United Kingdom.
E-mail: michiel@dcs.kcl.ac.uk. Part of this work was
done while the author was at the Max-Planck-Institut
fiir Informatik, Saarbriicken.

Ravi Janardan?*

Michiel Smid}

1 Introduction

Let S be a set of r bounded, convex polygons
in the plane with a total of n vertices. By a
polygon, we mean the region consisting of the
boundary as well as the interior. Polygons P
and Q are said to intersect if they share a point;
in particular, they intersect if one is completely
contained inside the other or if their boundaries
intersect.

We consider efficient algorithms for reporting
output-sensitively (resp. counting) all intersect-
ing pairs of polygons in S. By output size we
mean the number of intersecting pairs of poly-
gons in S; we denote this by I. Let K denote the
total number of intersections between the poly-
gons in S. That is, if P is completely contained
in @, or vice versa, we count this in K as one in-
tersection; otherwise, if the boundaries of P and
Q intersect, then we count all the boundary in-
tersections in K. Note that I is no larger than
K and, in general, it can be much smaller: The
boundaries of P and @ can intersect O(|P|+|Q])
times; however, this is counted in I as just a sin-
gle intersection between P and Q.

Output-sensitivity is only one of the reasons
why the problem we consider is interesting and
non-trivial. A second reason has to do with the
number of polygons and their sizes. We note at
the outset that the problem is straightforward
if either (a) r is a constant, or (b) all the poly-
gons are of constant size. Consider case (a):
Assuming that the polygons P and @ are repre-
sented appropriately, we can use the algorithm
of Chazelle and Dobkin [2] to decide if they in-
tersect in time O(log(|P| + |Q])) = O(logn).
Considering all pairs of polygons in this way, we
can solve the problem in time O(r?logn + I) =
O(logn). (Here I = O(1), since r = 0O(1).)
Next, consider case (b): Note that I = (K
since all the polygons are of constant size. We
can compute the at most K boundary intersec-

tions among the polygons in S by using the algo-
rithm of Chazelle and Edelsbrunner [3] in time
O(nlogn+K). Moreover, we can determine the
at most K complete containments among the
polygons by triangulating them and then stab-
bing the triangles with a vertex of each polygon.
This takes time O(n%/310g®Y n + K) using the
algorithm given in [1, Corollary 5.14]. It follows
that the total time is O(n%/31og®" n + I).

The interesting case is when both r and the
polygon sizes depend on 7, for then the two ap-
proaches outlined above are not efficient. For
example, assume that each polygon has size
n®, for some @, 0 < a < 2/3; thus r =
n!==. Assume further that the polygons inter-
sect pairwise in the maximum number of edges.
Thus there are ©(n?®) intersections in each of
the ©(n?2*) pairs, so that K = ©(n?>~%).
Moreover, I = O(n?72%) = o(K). The first
approach above takes time O(r?logn + I) =
O(n?*~2*logn). The second approach takes
time O(n*/310g®Y n + K), which is ©(K) since
K = O(n*°) and a < 2/3. The first solu-
tion can be made nearly quadratic by a suitable
choice of o, while the second solution is not sen-
sitive to I.

The challenge then is to devise an algorithm
for reporting the intersecting pairs of polygons
in output-sensitive fashion, in time O(f(n) +1I),
where f(n) is subquadratic and small. For the
more difficult counting problem, we seek an al-
gorithm with running time O(f(n)). (Note that
the counting problem can be solved using a re-
porting algorithm, but this is not efficient.) We
remark that we are not aware of any previous
work on this problem.

2 Summary of results

Our first result is a data structure of size
O(m*¢) (for any m satisfying n < m < n?),
which stores a set S of convex polygons with a
total of n vertices, such that given a query con-
vex polygon, @, the Ig polygons in S intersect-
ing Q can be counted (resp. reported) in time
O(|Q| - ni*¢/m*/?) (resp. O(|Q| - n'*</m*/? +
Ig)). Using the counting (resp. reporting) ver-
sion of this data structure, we can count the
pairs (resp. report the I pairs) of intersecting
polygons in time O(n/3+¢) (resp. O(n*/3+¢ +
I)), for any constant € > 0. This algorithm is
based on an interesting characterization of the
intersection of two convex polygons in terms of
intersecting pairs of trapezoids from their trape-

zoidal decomposition. We also give an alterna-
tive algorithm for the reporting problem, which
runs in time O(n%/31og®® n + I). This algo-
rithm is based on a different characterization of
the intersection of a pair of convex polygons in
terms of their upper and lower chains and their
leftmost vertices.

3 The counting problem

3.1 Characterizing the intersec-
tion of two polygons

We need the notion of a trapezoidal decomposi-
tion. Let P be a convex polygon. Draw a ver-
tical line through each vertex of P. This par-
titions P into O(|P|) trapezoids and triangles
P1,Ps,..., sorted from left to right. We con-
sider a triangle as a degenerate trapezoid. We
define an artificial trapezoid Py, which is imme-
diately to the left of P;, and which “behaves”
like an empty trapezoid. By definition, Py does
not intersect anything. (Pp can be represented
by four halfplanes whose intersection is empty.)
Note that a trapezoid also consists of a bound-
ary together with its interior.

For each polygon P of S, we define a new set
P consisting of all pairs (P;, Piy1), i > 0. We
call each pair (P;, Pi+1) a trapezoidal pair of P.

Definition 1 Let P and Q be two convex poly-
gons. Consider the sets P and Q. We say that
the elements (P;, Piy1) € P and (Q;,Qj+1) € @
have a conflict if

1. PiaNQjy1 #0, and
2. P,NQj41 = 0, and
3. Pi1nQ; =0.

Theorem 1 Let P and Q be two convez poly-
gons. Then P and Q intersect if and only if
there are indices i and j such that (P;, P;y1) and
(Qj,Qj+1) have a conflict. Moreover, if such
indices 1 and j ezist, then they are unique.

Proof: Suppose there are indices ¢ and j such
that (P;, P;y+1) and (Qj,@;+1) have a conflict.
Then P;4; and Qj+1 have a point in common.
Hence, P and @ also have a point in common,
i.e., P and Q intersect.

To prove the converse, assume that P and Q
intersect. Let z be the leftmost point in the
intersection of P and Q. (If there is no unique
leftmost point of intersection, then we take for z

the leftmost point with minimum y-coordinate.)
We distinguish three cases.
Case 1: z is in the interior of Q.

In this case, £ must be the leftmost point of
P. In particular, z is a point of the trapezoid
P;. Let j > 0 be the index such that z € Q;41.
(If z is on the boundaries of two trapezoids of
Q, then we choose j such that z is on the right
boundary—which is vertical—of Q;4;.) Note
that z does not belong to ;. We claim that the
elements (P, P) and (Q;, Q;+1) have a conflict.
Indeed, since z € P,NQj+1, wehave PINQj4+1 #
@. Also, by definition of the artificial trapezoid
Py, we have Py N Q;+1 = 0. Finally, we have
PiNQ; = 0: This follows from the facts that (i)
z is the leftmost common point of P and @, (ii)
z does not belong to Q; and (iii) Q; is to the
left of Qj41.

Case 2: z is in the interior of P. This case is
symmetric to Case 1.

Case 3: z is on the boundaries of both P and
Q.

Let 7 (resp. j) be the index such that z € P;4;
(resp. z € Qj+1)- (If z is on the boundaries of
two trapezoids of P (resp. @), then we choose
1 (resp. j) such that = is on the right boundary
of P;y1 (resp. Qj+1).) We claim that the pairs
(P, Pi+1) and (Qj,Qj+1) have a conflict. The
case Piy1 N Qj41 # 0 is obvious. If we had
P;NQj+1 # 0, then = could not be the leftmost
intersection since P; is to the left of P;;;. The
case involving P;;; and Q); is similar.

This proves the first part of the theorem.
Now assume there are indices 7 and j such that
(P;, Pi+1) and (Qj,Qj+1) have a conflict. We
will prove that ¢ and j are unique.

Among all indices ¢ > 0 and j > 0 such that
(Ps, Pi4+1) and (Q;, Qj+1) have a conflict, choose
those for which the pair (2, j) is lexicographically
maximal. We consider four cases.

Case A:i1=3;=0.

The way we chose the pair (7, j) immediately

implies that ¢ and j are unique.

Case B: i=0and j #0.

We claim that there is no & such that k <
j and (Po, P1) and (Qk,Qk+1) have a conflict.
Clearly, this claim will prove that 7 and j are
unique.

To prove the claim, assume there is a k < j
such that (P, P;) and (Qk,Qk+1) have a con-
flict. We know that P, N Qry1 # 0 and
PiNQjt+1 # 0. Let a and b be points of PyNQk+1
and PNQj+1, respectively. Then, by convexity,

the segment ab is completely contained inside

PN (Qrs1UQr+2U...UQj41)-

Moreover, this segment passes through the
trapezoid Q. Hence, PiNQ; # 0 which contra-
dicts the fact that (P, P1) and (Qj, @;+1) have
a conflict.
Case C:i#0and j =0.

We claim that there are no k and £ such that
k <4, £ >0, and (Px,Pry1) and (Qe, Qr+1)
have a conflict. Clearly, this claim will prove
that 7 and j are unique.

To prove the claim, assume there are k < 4
and £ > 0 such that (P, Pr41) and (Qr, Qe+1)
have a conflict. We know that Pry1 N Qey1 # 0
and P,y 1 NQ; # 0. Since k < i, the trapezoid
Py is to the left of P;y;. But then ¢ must be
equal to zero. As in Case B, let a and b be points
of Pr41 N@Q1 and P;y; NQ1, respectively. Then
the segment ab is completely contained inside

(Peyg1UPry2U...UPip1) N Q1.

Since this segment passes through the trapezoid
P;, it follows that P, N Q; # 0, which is a con-
tradiction.

Case D: i #0and j #0.

Let L and L' denote the left vertical sides
of P41 and Qj4+1, respectively. Note that L
and L' exist and that they are also the right
vertical sides of P; and @Qj, respectively. Since
P;NQj+1 =0, L lies completely outside Q1.
Similarly, since P;41NQ; = 0, L' lies completely
outside P;4;. These two facts, together with the
fact that P;+1NQj+1 # 0, imply that the bound-
aries of P;y; and Qj4 intersect. In particular,
the top side, t, of Q;41 intersects the bottom
side, b, of P;+; or, symmetrically, the bottom
side of @Qj+1 intersects the top side of Pjy;. As-
sume without loss of generality that ¢ intersects
b. Then the slope of ¢ is larger than that of b.
(Otherwise, L would intersect @;j4+1 or L' would
intersect P;,1.) By convexity, the polygon @ lies
below the supporting line of ¢, and the polygon
P lies above the supporting line of b. Hence,
the polygon P N @ does not contain any point
to the left of the intersection of ¢ and &. In par-
ticular, there are no indices k and £ such that
(k, £) is lexicographically smaller than (7, 5), and
(Prs Pr+1) and (Qg, Q¢+1) have a conflict. This
proves that 7 and j are unique.

This completes the proof of the theorem. B

10

3.2 Review of a query composi-
tion technique

In Section 3.3 below, we will express intersection
conditions as the conjunction of A > 1 halfplane
range queries, where h = O(1). Towards this
end, we review a useful query composition re-
sult due to van Kreveld [9], which we will use.
(This result is based on multi-level range search-
ing structures [5, 6, 4].)

Let S be a set of n geometric objects. Let
D be a data structure for some query prob-
lem on S, with building time, space and query
time bounds of p(n), f(n) and g(n), respec-
tively. Suppose that we now wish to answer
queries not on the entire set S but on a sub-
set S’ of S, where S’ is specified by putting S in
1-1 correspondence with a set P of points in R¢
and letting S’ correspond to the subset P’ of P
lying in a query simplex. (In [9], this technique
is called simplex composition on P to D.) The
following theorem, adapted from [9], states how
fast the query problem on S’ can be solved.

Theorem 2 [9] Let S, D, P and n be as above.
For an arbitrarily small constant € > 0, sim-
plex composition on P to D yields a data struc-
ture with building time O(m¢(m + p(n))), size
O(m¢(m + f(n))), and query time O(n*(g(n) +
n/m'/%)), for any n < m < n?, assuming
f(n)/n is nondecreasing and g(n)/n is nonin-
creasing. For the reporting problem, the output
size, denoted by k, must be included in the query
time as an additive term. B

In our application, the simplex will always be
a halfplane. Given the h = O(1) halfplanes, we
proceed as follows: We design an initial data
structure D. Then we apply Theorem 2, with
one of the h halfplanes. This gives a new struc-
ture D' to which we apply Theorem 2 using a
second halfplane and so on. Since h = O(1),
the space and query time bounds of the result-
ing structure are asymptotically the same as the
ones given in Theorem 2.

3.3 The algorithm for the count-
ing problem

Lemma 1 Tuwo trapezoids P and Q intersect iff
(i) P has a vertez inside Q, or

(i) Q has a vertez inside P, or

(iii) an edge of P intersects an edge of Q. W

First let us consider the following problem:
Preprocess a set S of trapezoids in the plane,

1

such that given a query trapezoid @, the trape-
zoids in S that intersect Q can be counted
efficiently. We can define a boolean formula
B(P, Q) in disjunctive normal form (DNF) such
that B(P,Q) is true iff P intersects Q. Each
minterm in B(P, Q) is the conjunction of liter-
als of the form p € H, where p is a point and
H is a halfplane (either open or closed). The
point p is either a vertex of P or the dual of
a line supporting an edge of P, while H is a
halfplane whose bounding line is either a sup-
porting line of an edge of @ or is the dual of a
vertex of Q. For example, the condition that a
vertex p € P is in Q in Lemma 1 can be writ-
ten as the conjunction of four closed halfplane
membership conditions, where each halfplane is
bounded by a supporting line of an edge of @
and contains Q. The condition that a vertex of
Q is in P can be expressed similarly using du-
ality. The intersection of an edge of P and an
edge of Q can also be written similarly. (Note
that the condition p ¢ H—which arises when
we want to express the non-intersection of two
trapezoids, as in Definition 1—can also be ex-
pressed in a similar form as p € H¢, where H®
is the open halfplane that is complementary to
H.) Let M;,i=1,2,...,k, be the minterms of
B(P,Q). We may assume that B(P, Q) is writ-
ten in a form such that it is true iff exactly one
of the M;’s is true. We can ensure this easily:
we create the truth table for B(P, Q) and, for
each instance of a 1 as the truth value, we write
out the corresponding minterm. Since P and
Q are of constant size, B(P,Q) has a constant
number of minterms, each of constant size.

A trapezoid is composed of (at most) four
vertices p;,i = 1,...,4 and at most four edges
ei,i = 1,...,4. Let p} denote the point that
is dual to the line supporting e;. Any of the
minterms M can be written as

M=G1/\G2/\G3/\G4/\GI/\G;/\G§/\GZ

where G; (resp. G}) is the AND of literals of the
form p; € H (resp. p; € H). We build a data
structure corresponding to each minterm. Each
such data structure is built on all the trapezoids
P that we have. Each data structure is built
on eight levels, corresponding to the p;’s and
p!’s. Given a query trapezoid Q, we query each
data structure. If level j is built on p;, then
we look at the literals in G; = (p; € H1 Ap; €
HyA...Ap; € Hy). Bach Hy,k=1,...,s (where
s < 16) is a halfplane bounded by one of the
edges of Q or is dual to one of the vertices of
Q. We query the data structure at level j by

first searching using Hj, then searching with H,
below nodes selected by H; and so on. Once we
are done at level j, we explore the level j + 1
structures at nodes selected at level j. For a
given @, a particular trapezoid P intersecting
Q@ will be included in the count for the query on
the data structure corresponding to only one of
the minterms (because B(P, Q) is written such
that it is true iff exactly one of its minterms is
true). Hence the counts from the queries of the
different data structures can be simply added
up. We apply Theorem 2 with d = 2 to get:

Lemma 2 For any m satisfying n < m <
n?, and any constant ¢ > 0, a set S of n
trapezoids in the plane can be preprocessed in
time O(m!*¢) into a data structure of size
O(m!*€) such that the trapezoids that inter-
sect a query trapezoid QQ can be counted in time
O(n1+‘/m1/2). B

Now we turn to another problem. Let PS
denote the union of the sets P of trapezoidal
pairs corresponding to all polygons P € S.
We wish to preprocess PS into a data struc-
ture such that given a query trapezoidal pair
Tq, the trapezoidal pairs in PS that have a con-
flict with Ty can be counted efficiently. We con-
sider two trapezoidal pairs Tp = (P, P") and
To = (Q',Q") and the three conditions enumer-
ated in Definition 1. From the previous discus-
sions, we know how to construct the boolean
formula for the first condition of Definition 1.
For the second and the third conditions of Def-
inition 1, we construct the boolean formula for
the corresponding intersection condition, negate
it and again write it in DNF. From the AND
of the three formulas thus constructed, we can
construct a boolean formula Br(Tp,Tg) which
is true iff Tp and T have a conflict. Moreover,
we can write Br(Tp, Tg) in DNF such that it is
true iff exactly one of its minterms is true.

Lemma 3 Let PS be a set of O(n) trapezoidal
pairs in the plane. For any m satisfying n <
m < n2, and any constant € > 0, we can prepro-
cess PS in time O(m!*¢) into a data structure
of size O(m'*¢), such that the trapezoidal pairs
in PS that conflict with a query trapezoidal pair
Tq can be counted in time O(nt</m'/2). B

Finally we would like to preprocess a set S
of r convex polygons with a total of n vertices
(where r and the polygon sizes can depend on
n), into a data structure such that given a query
convex polygon @, the polygons in S intersected
by @Q can be reported efficiently.

Theorem 3 Let S be a set of convex polygons
in the plane with a total of n vertices. For any
m such that n < m < n?, and any constant
€ > 0, S can be preprocessed in time O(m!'*€)
into a data structure of size O(m'*¢) such that
the polygons in S that intersect a query polygon
Q can be counted in time O(|Q| - n*+</m'/?). W

To count pairwise intersections of the poly-
gons, we simply build an instance of the data
structure of Theorem 3 and query with each
polygon in turn.

Theorem 4 Given a set S of convezx polygons
in the plane with a total of n vertices, the num-
ber of intersecting pairs of polygons in S can
be counted in time O(n*/3+¢), for any constant
e>0.1

4 The reporting problem:
an alternative algorithm

The technique presented in the previous section
can also be used to report the I intersecting
pairs of polygons in time O(n*/3+¢ 4+ I). In this
section, we use a different approach to obtain a
slightly faster algorithm.

We preprocess each polygon to remove any
vertex between two adjacent edges supported
by the same line. This can be achieved in O(n)
time. We also assume that no polygon has a ver-
tical side, which can be achieved by appropriate
rotation.

Now each polygon P has a leftmost ver-
tex £(P), a rightmost vertex r(P) and can be
uniquely decomposed into an upper chain U(P)
and a lower chain L(P) at these vertices. We
give a different characterization for the inter-
section of two convex polygons P and (), which
forms the basis of the reporting algorithm.

Observation 1 For convex polygons P and Q,
if L(P) intersects U(Q), then at most a total of
eight edges of L(P) and U(Q) are involved in
the intersection. B

Theorem 5 Two convez polygons P and Q in-
tersect iff

(i) £(P) € Q or £(Q) € P, or

(i) L(P) intersects U(Q) or U(P) intersects
L(Q).m

Given r convex polygons with a total of n ver-
tices, we break them up into upper and lower
chains. We color the segments from the up-
per chains red and those from the lower chains

12

blue. Then we run the red-blue segment inter-
section algorithm given in [1, Theorem 5.10] to
compute all intersections involving a red seg-
ment and a blue segment. This takes time
O(n*/310g°® n + k), where k is the number of
red-blue intersections. This time bound is also
0(n*/310g°W n + I, since k = O(I) by Obser-
vation 1. (Note that there can be intersections
between red segments and, similarly, between
blue segments; therefore we cannot use the al-
gorithms given in (7, 8].)

Next we take the r leftmost points of the poly-
gons, triangulate the polygons into O(n) trian-
gles and solve the following problem: Given r
points and O(n) triangles, report all k' pairs
(p,t) such that point p lies in triangle ¢. Using
an algorithm given in [1, Corollary 5.14], this
problem can be solved in time O(n%/3 1og®™® n+
k'), which is O(n#/310g®W n + I), since k' =
O(I). We conclude:

Theorem 6 Given a set S of convez polygons
in the plane, with a total of n vertices, the I
pairs of polygons that intersect can be reported
in time O(n%/310g®Vn+1). W

Remark 1 Let A and B be sets of convex
polygons, with a total of n vertices, where no
two polygons in the same set intersect. Us-
ing the above approach, we can report in time
O(nlogn + I) the I pairwise intersections be-
tween polygons in A4 and B.

Note that Observation 1 and Theorem 5 still
hold for P € A and Q € B. We color red (resp.
blue) the segments belonging to the upper (resp.
lower) chains of polygons in A (resp. B). Then
we compute all k red-blue intersections using
the algorithm of [7] or [8]. These algorithms
are applicable since no two red segments and
no two blue segments intersect. This takes time
O(nlogn + k) = O(nlogn + I), since k = O(I)
by Observation 1. We then repeat the above
step with the lower chains in 4 and the upper
chains in B.

Next, we take the leftmost vertex of each
polygon in B and determine which polygon (if
any) in A contains it. Since the polygons in
A are non-intersecting, this step can be done
by building, in O(nlogn) time, a point-location
structure for the subdivision induced by the
polygons in A and querying with the leftmost
vertex of each polygon in B. The total time for
the queries is O(|B|logn) = O(nlogn) time. It
follows that the overall time for the algorithm is
O(nlogn +I).

References

[1] PK. Agarwal. Intersection and decompo-
sition algorithms for planar arrangements.
Cambridge University Press, New York,
1991.

[2] B. Chazelle and D.P. Dobkin. Intersection of
convex objects in two and three dimensions.
Journal of the ACM, 34(1):1-27, 1987.

[3] B. Chazelle and H. Edelsbrunner. An opti-
mal algorithm for intersecting line segments
in the plane. Journal of the ACM, 39(1):1-
54, 1992.

[4] B. Chazelle, M. Sharir, and E. Welzl. Quasi-
optimal upper bounds for simplex range
searching and new zone theorems. Algorith-
mica, 8:407-429, 1992.

[5] D.P. Dobkin and H. Edelsbrunner. Space
searching for intersecting objects. Journal
of Algorithms, 8:348-361, 1987.

[6] J. Matousek. Efficient partition trees. Dis-
crete & Computational Geometry, 8:315—
334, 1992.

[7] H.G. Mairson and J. Stolfi. Reporting and
counting intersections between two sets of
line segments. Theoretical Foundations of
Computer Graphics and CAD, NATO-ASI
Series (R.A. Earnshaw, ed.) 307-325, 1988.

[8] L. Palazzi and J. Snoeyink. Counting and re-
porting red/blue segment intersections. Pro-
ceedings of the Third Workshop on Algo-
rithms and Data Structures, Lecture Notes
in Computer Science, Vol. 709, Springer-
Verlag, Berlin, 530-540, 1993.

[9] M. van Kreveld. New results on data struc-
tures in computational geometry. PhD the-
sis, Department of Computer Science, Uni-
versity of Utrecht, Utrecht, the Netherlands,
1992.

13

