Translating a Convex Polygon to Contain
a Maximum Number of Points*
EXTENDED ABSTRACT

Gill Barequet!

1 Introduction

Finding an optimal transformation of a region such that
it contains (encloses) a given point set or subset is a prob-
lem that has received considerable attention. Applications
include optimal object placement (CAD), clustering, and
statistical data analysis. As may be expected, there are
many variants of this generally stated problem. For exam-
ple, finding the smallest circle enclosing a given point set
S is a famous problem in computational geometry. (See
[13, pp. 255-259] for a brief summary.) This problem has
been naturally extended to the smallest enclosing trian-
gle [7, 11, 3], square, and rectangle [15], and the smallest
enclosmg convex polygon.

Another variant of this problem is: leen a set S of
planar points and a fixed mteger k, find a region that
contains a k-subset of S and minimizes some measure
such as area, radius, or circumference. Efrat, Sharir,
and Ziv [6] give algorithms for computing the smallest k-
enclosm% circle in O(nk log? n) time and O(nk) space, or
O(nklog®nlog(n/k)) time and O(nlogn) space. Eppstein
and Erickson [5] provide fast new solutions to a number of
these problems including finding k-subsets of a given set
S that minimize the following measures: area, perimeter,
diameter, and circumradius. Their algorithm for mini-
mizing circumradius (equlva.lent to finding the smallest
k-enclosing circle) requires O(nlogn + knlog k) time and
O(nlogn + kn + k?log k) space. Recent work by Datta,
Lenhof, Schwartz, and Smid [4] has also provided further
improvements and refinements.

A closely related problem is to find a placement of a
region that maximizes the size k of the subset contained.
That is, instead of fixing k and finding the optimal region
enclosing it, we fix the size and shape of the region and try
to maximize k. In this paper, we examine the following
problem:

Problem 1 Given a convez polygon P and a planar point
set S, find a translation T that mazimizes the number of
points contained by T(P).

*Work on this paper by the first author has been supported by the
G.LF., the German-Israeli Foundation for Scientific Research and
Development, and by the Israeli Ministry of Science Eshkol grant
0562-1-94. Work by the second and third authors has been sup-
ported in part by NATO East Europe grant GER-83-55507. Work
by the second author has been supported also by National Science
Foundation grant CCR-93-01714.

1School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv
69978, Israel

‘Mddlebury College, Middlebury Vermont, USA

$University of Timigoara, Timigoara, Romania

-6l-

Matthew Dickerson?

Petru Pau’

This problem has many of the same applications as the
problems mentioned in the previous paragraphs, and has
been used as a substep in some of their solutions [5, 6].
Problem 1 also relates to the fixed radius search problems
and to problems of optimal object placement.

Chazelle and Lee [2] first solved the problem of plac-
mg a fixed radius circle to contain the largest subset of a
given set S. Their algorithm requires O(n?) time. Epp-
stein and Erickson [5], as a substep of their algorithm to
find the minimum L, diameter k-subset of a given set
S, note that an algorithm of Overmars and Yap [12] can
be modified to find the maximum depth of an arrange-
ment of axis-aligned rectangles. This approach solves in
O(nlogn) time the problem of finding an optimal transla-
tion of a rectangle to cover the maximum sized subset of
S. That is, it solves Problem 1 in O(nlogn) time in the
special case when ‘polygon’ is a rectangle. Efrat, Sharir,
and Ziv [6] as a substep in their algorithm for finding
the smallest k-enclosing homothetic copy of an m-vertex
polygon, claim an oracle solving Problem 1. They sug-
gest a line- sweep technique for their oracle, but give no
details. For the case when m is a constant, they claim
the algorithm to run in O(nklogn) time (it should be
O(nklogn + m) time) and for general m the complexity
is worse by a factor of O(log m), that is, the algorithm
requires O(nk lognlogm + m) time.

A variant of Problem 1 is:

Problem 2 (Bichromatic Coverage) Given a convez
polygon P and two planar point sets A and B, find a trans-
lation T such that the number of points in A contained by
7(P) minus the number of points in B contained by T(P)
18 mazimized.

1.1 Overview of New Results

We provide two general solutions to Problem 1 for ar-
bitrary convex polygons. Our first algorithm requires
O(nk log(mk) 4+ m) time and O(m + n) space, which is
asymptotically faster than that of [6]. We also give de-
tails of a line-sweep algorithm, similar to that suggested
by [6], and show that the algorithm runs in O(nk(logn +
logm) + m) = O(nklog(nm) + m) time rather than
O(nk log nlog m) time. We also show that the bichromatic
version, Problem 2, can be solved in the same running
time with only a slight modification of the algorithm. In
fact, our algorithms solve a more general problem where
all points have given weights, and the goal is to maximize
the total weight of contained points.

Our first algorithm is based on a lemma that limits
the number of possible translations to certain iransla-

tion stable placements. A naive algorithm based solely
on this lemma requires O(n?mlog(mn)) time. We
show how to improve the complexity to output-sensitive
O(nk log(mk) + m) time at no further cost to space. Our
improvements are based on two techniques. The first tech-
nique relies on a simple property that relates translation
stable placements to pairwise intersections of convex poly-
gons, which may then be computed efficiently. The sec-
ond technique is bucketing. Let Ap be the area of the
smallest rectangle enclosing P, and let As be the area of
the smallest rectangle enclosing S. In the case where the
ratio As/Ap is O(n), then a simple bucketing approach
using buckets of size Ap achieves the O(nklog(mk)) time
bound at no further space cost. If As/Ap is w(n), then
we use either a hash table to explicitly store only those
buckets actually containing points from S, or a degraded
grid approach as suggested in various papers by Lenhof
and Smid [10]. Both of the algorithms make use of a
method for computing in O(logm) time the intersections
between two translated copies of an m-vertex convex poly-
gon. This method is based on prune-and-search tech-
niques presented by Kirkpatrick and Snoeyink [9].

2 Geometric Preliminaries

We now present some geometric results necessary for our
latter algorithms. We begin with some definitions and
notation that will be used throughout the paper.

We use ¢; to represent the ith point in our input set
S. We assume that the polygon P is represented as a list
of its vertices p;,...,pm given in clockwise order with p;
located at the origin. Thus given a translation T repre-
sented as a vector v, we can in constant time compute
the position of the ith vertex of 7(P) as p; + v without
explicitly computing the entire polygon.

We use the standard notation P to represent the
boundary of the polygon P. That is, 8P is the union
of the edges and vertices of P. Likewise, 87(P) is the
boundary of the translated polygon 7(P).

In addition to this notation, we also use the following
definitions. Given two polygons P and Q such that P con-
tains Q. Chazelle [1] defines a contact point between P
and Q as an intersection of a vertex of Q with an edge of P.
When translations and rotations of P are allowed, a stable
placement of polygons P and Q is one with three contact
points. (Note that if a vertex of Q lies on a vertex of P, it
intersects two edges of P and thus contributes two contact
points.) The same definition may be extended to a poly-
gon P and a contained set S. For this paper, however, we
need a slightly different notion of stable placement which
applies to translations only. We define a translation stable
placement as follows:

Definition 1 Let 7(P) be a translation of polygon P con-
taining a set of points S. We say that T(P) is in trans-
lation stable placement if at least 2 poinis in S are on
oP.

Note that unlike Chazelle’s original general definition,
a translation stable placement is not defined by contact
points but by two distinct points in S both on the bound-
ary of (P). Using these definitions, we may now proceed
with the preliminary results.

-62-

2.1 Limiting the Search Space

Chazelle [1] showed that if a polygon P contains a poly-
gon Q, then there exists a rigid motion (translation and
rotation) of P containing Q and in a stable placement.
That is, at least one of the following conditions holds: 1)
At least 3 points in S lie on 8P; or: 2) At least 2 points
in S lie on 8P and at least one point lies on a vertex of
P. We may easily extend (or rather simplify) this result
to show the following:

Lemma 1 Let S be a planar point set and let P be a
convez polygon. If there is a translation T such that T(P)
contains k > 2 points, then there ezists a translation T°
such that 7*(P) contains at least k points and is in irans-
lation stable placement.

Actually, this result is stronger than we need. In our first
algorithm, we limit our search space to translations 7 with
at least one point of S on 87(P). However we use the
idea of stable placement to find these translations. The
following lemmas show that given two points ¢; and g¢;
and a polygon P, translation stable placements can be
determined efficiently. (For Lemmas 2 and 3, see Figure 1.
For simplification, in the figure we let ¢z be on the origin
(0,0). That is, 75 is the null translation.)

Lemma 2 Let P be a conver polygon, q1,¢2 points, and
71 and T, the translations mapping the origin to poinis
q1 and gz respectively. For any point z on OP, define
Tz = q2 — = as the translation that maps z to qz. Then
1(z) is a point of intersection between 87y (P) and 9my(P)
if and only if ¢, is on 87 (P).

Lemma 2 states that 7.(P) is in translation stable place-
ment with ¢; and g2 on the boundary of 87(P) if and
only if 7y (z) is a point of intersection between 87, (P) and
813(P). The proof of this lemma follows from elementary
geometry and vector arithmetic. In fact, the lemma easily
generalizes to the following:

Lemma 3 Let P be a conver polygon, q1,4q2 points, and
71 and 73 the translations mapping the origin to poinis q;
and g, respectively. For any point z, define 7: = g2 — =
as the translation that maps z to ga. Then z € (n(P)N
72(P)) if and only if 7.(11(P)) contains both q1 and g;.

2.2 Computing Events Quickly

Both of our algorithms are based on event queues of
some sort. In the second algorithm, we use a standard
line-sweep technique. In the first algorithm we use a dif-
ferent technique, that of an anchored sweep: sweeping the
polygon around a point in S, keeping the polygon edges in
contact with that point as we process events in clockwise
order around the polygon.

In both cases, as was shown in Lemmas 2 and 3, the
events are determined by intersection points between poly-
gons. Fortunately, we do not need to compute intersec-
tions between two arbitrary polygons but only between
two translated copies of the same convex polygon. That
is, we must solve the following problem.

Problem 3 Let P be a conver polygon with m vertices,
and let 7, and T2 be translations. Compute intersections
between 87y (P) and 8r3(P).

TQ(P) = P

qQ

Figure 1: Stable Placements from Intersecting Polygons

We show that this problem can be solved efficiently, as
is stated in the following lemma:

Lemma 4 Problem 3 can be solved in O(logm) time for
translates of an m-veriez convez polygon.

The proof of this lemma follows from recent results
of Kirkpatrick and Snoeyink [9] on tentative prune-and-
search techniques for computing fixed-points. The inter-
sections between 87;(P) and 872(P) can be found from
the two parallel chords of P of length and direction 72—7;.
It is shown in [9] that the fixed-point of the composition
of a monotone increasing piecewise-basic function and a
monotone decreasing piecewise-basic function can be com-
puted in O(logm) time using tentative prune-and-search
techniques. As an application, it is shown how to com-
pute the a pair of chords of a polygon of a given length
and direction, also in O(log m) time, solving Problem 3.

2.3 Limiting the Search Space More

We have described how our search space can be limited
to translation stable placements. We now show that it
may be limited further to a number of events which is
output sensitive. The method for doing this varies with
the algorithm. In our first algorithm, we use bucketing
to limit the number of pairs of points that need to be
explicitly examined. To prove this method is efficient, we
will use the following two lemmas, which are not difficult
to prove.

Lemma 5 Let P be a conver polygon. There ezist two
rectangles Rp and Ry such that Rp encloses P and is no
more than 2 times the area of P, and R is inscribed in
P, is orthogonal to Rp, and is at least 1/2 as long as Rp
and at least 1/4 as wide as Rp.

Lemma 6 Let S be a point set and P a convez polygon.
Then there ezists a rectangle Rp enclosing P with the fol-
lowing property: If there ezists a translation 7(Rp) of Rp
containing k points of S, then there ezists a translation
7*(P) of P containing Q(k) points of S.

The following result, proven by Sharir [14], will be used
in the analysis of our second algorithm.

Lemma 7 (Sharir) Let A be an arrangement formed by
n shapes in the plane, having the property that the bound-
aries of each pair of shapes intersect at most twice. If the
mazimal depth of the arrangement is < k then the number
of intersections of pairs of the boundaries is O(nk).

3 The First Approach

We now present the first algorithm for the solution to
Problem 1. From Lemma 1, we see that we may limit our
search to translations of the polygon which are in trans-
lation critical positions. A naive approach based on this
Lemma is, for every edge e; in P and every point ¢; in S,
translate e; onto gj, and then slide e; along ¢; in discrete
intervals determined by the translation stable placements.
For each of the ©(nm) edge-point pairs, we need to com-
pute the distance of every other point in S to the bound-
aries of the current translated polygon in the direction
determined by e;, and keep an updated event queue. This
requires O(log(nm)) time per point for each of the n — 1
other points for a total of O(n?m log(nm)) time. Based on
the results presented in Section 2, however, we can speed
this approach considerably. First, we use bucketing as fol-
lows to limit the number of pairs of points examined. Let
Rp be a rectangle enclosing P and of area proportional to
P (as described in Lemma 5). Let Rs be the smallest area
rectangle orthogonal to Rp and enclosing S. We use Rp
to partition Rg into a grid of “buckets”, and then place
each point of S into its appropriate bucket. Note that for
a given point ¢; € S, there are at most 9 buckets inter-
sected by all polygons r(P) with ¢; on its boundary. We
define the neighborhood B; of point g; as the bucket that
¢; is in plus its 8 adjacent buckets, including those diag-
onally adjacent. Our search from point ¢; will be limited
to points in B;.

Secondly, we avoid recomputing distance information
for all points for every edge ¢; of P, but instead for all
j # i and ¢; € B; we compute at one time all stable
placements between ¢; and ¢; using Lemmas 4 and 6. The
resulting algorithm is given in Figure 2. We use 7; for
the translation mapping the origin to the point ¢; € S.
We let Q be a priority queue of pairs (z,j) where z is

-63-

I. Preprocessing: Preprocess points into buckets. Initialize Q.

II1. Iteration

{Maximum # of points contained so far}
{Anchored sweep from every point}
{Points contained by current translation}
{Examine nearby points for containment}
{Compute stable placements with ¢;, ¢;}

1. Set max := 0;

2. FOR each point ¢; € S DO BEGIN

3. Set ¢ :=1;

4. FOR each j # i and ¢; € B; DO BEGIN

5. Compute intersections of 87;(P) and 37;(P).

6. Let 7;(z) be a discrete intersection point; ADD (z, j) to Q.
7. IF g; is contained by 7;(P)

THEN Mark ¢; “IN”; Set c:=c+1;

ELSE Mark ¢; “NOT IN”.
END IF
8. END FOR
9. WHILE Q # § DO BEGIN
10. Delete (z, j) from front of Q.
11. IF g; is not “IN”
THEN Set ¢ := ¢+ 1; Mark

g; “IN”.

{Sweep with stable placements as events}
{Update structures and counters}

ELSE Set ¢ := ¢ —1; Mark ¢; “NOT IN”.

END IF

12. IF ¢ > max, THEN Set max := c; Store translation. END IF

13. END WHILE
14. END FOR

Figure 2: Algorithm 1

a point on 8P and the points are ordered in clockwise
order around P. We can represent z by the edge number
and the distance along the edge. The proof of correctness
follows from the results of Section 2.

3.1 Analysis

We now present an asymptotic analysis of the time re-
quired by Algorithm 1, given in Figure 2.

The outer loop beginning at Step 2 is iterated n times.
It follows from Lemma 6 that for each iteration of the
outer loop, the inner loop beginning at Step 4 is iterated
O(k) times. So steps 5 through 7 in the inner loop are
iterated O(nk) times. From Lemma 4, we see that the
intersections at Step 5 can be computed in O(log m) time.
Likewise, the polygon inclusion queries of Step 7 may be
answered in O(logm) time.

Assume general position, such that we have at most
two discrete intersections per polygon pair. The prior-
ity queue for each point thus has at most 2k events. It
follows that the number of queue events in the loop begin-
ning at Step 9 is also O(k) and that each queue operation
requires O(log k) time. The algorithm therefore requires
a total of O(nk(logm + log k)) = O(nklog(mk)) time if
an appropriate bucketing strategy is used.

It is important to note that we are analyzing our use
of bucketing in a deterministic way. That is, our running
time is sensitive to k. Though the number of points in a
particular bucket may grow as large as ©(n), k is asymp-
totically as large as the number of points in the densest
bucket. We also note that only minor modifications are

-64-

required if we allow arbitrary position. When two poly-
gons intersect along an edge, only the initial point on the
first edge and the final point on the second edge need be
added to the queue. Both of these are polygon vertices.

3.1.1 A Note on Bucketing

The drawback to this approach is that the number of buck-
ets does not depend on n,m, or k but on As/Ap, the ra-
tio of the area of the smallest rectangle enclosing S to the
area of P. The initialization step requires O(n+m+ 42)
time and space. There are two different approaches to re-
solve the problem. The first is instead of explicitly storing
all ©(As/Ap) buckets, we only store those that contain
points. This may be accomplished using a hash table of
O(n) buckets. Every bucket reference is resolved with a
lookup to this O(n) sized hash table, which can be done
in O(1) expected case time.

A second approach is that of so-called degraded grids
introduced by Lenhof and Smid [10]. The idea is to use
varying sized buckets, whose size is the same as Rp if they
contain a point, but which grow maximally long and max-
imally wide if empty. This ensures that the total number
of buckets is still O(n), accomplishing in the worst case the
same time bounds accomplished by the hash table in the
expected case, at the cost of a slightly more complicated
preprocessing step. Readers are referred to the paper for
details of this very elegant approach.

4 The Second Approach

We now provide an alternative and conceptually quite dif-
ferent algorithm for the solution to Problem 1. This al-
gorithm is based on a technique now standard in com-
putational geometry: the line sweep. This more com-
mon and slightly simpler technique comes at the cost of a
log(nm)/ log(km) factor in the running time. It is based
on the following simple observation: if you reflect a poly-
gon P around a point p; to form a new polygon PR, then
for any translation 7, 7(p;) is contained by P* if and only
if p; is contained by 7(P). Thus computing an optimal
* translation of P (the translation containing the maximum
number of points) is equivalent to computing a location of
maximum depth in the arrangement of Rolygons formed
by translating a copy of the reflected P® to every point
¢; € S. Efrat, Sharir, and Ziv [6] suggested this approach
as an oracle in a parametric algorithm for computing the
minimum area homothetic copy of a polygon containing
k points for some fixed k. Without giving details, they
claimed the algorithm has a running time of O(nklogn)
if m is constant, with an additional logm factor other-
wise. As noted earlier, there is also an additional O(m)
term for preprocessing of the polygon P. We give de-
tails of this approach now, and prove a tighter bound of
O(nk log(nm) + m) rather than O(nklog nlogm + m).
Our algorithm makes use of only two data structures,
both of which are simple, standard, and easy to imple-
ment. The first structure is the event queue itself, used
for the line sweep. It returns the next event ordered by
z-coordinate. This is implemented as a standard priority
queue. The Add(e, Q) operation adds an event e to the
queue Q, and the DeleteMin(Q) operation returns the
next event e from Q. Both operations require O(loggq)
time, where ¢ is the current size of the queue. The sec-
ond structure keeps track of the current polygon chains.
These are stored in a balanced binary tree, ordered by the
y-coordinate at the current z position in the line sweep.
We call this structure a chain tree. The Add(C,CT) op-
eration adds a polygon chain C to a chain tree CT. The
NextEvent(C, CT) operation returns the next intersec-
tion between a chain C and a neighboring chain in the
tree CT. There is also a depth associated with the region
between each pair of chains in the tree. The goal of the
algorithm is to find the region of greatest depth.

4.1 Events

We describe the algorithm by first specifying the events in
the queue. There are three main types of events described
below:

Type 1. First Vertex The first (leftmost) vertex in
a polygon is the first type of event. There are n of these
events, all computed and added to the queue in the initial
stage. For every event of this type, we compute two chains
C; and C,, the lower and upper chains leading from the
leftmost to the rightmost vertex of the polygons. Both
chains are added to the chain tree (where they are ini-
tially consecutive) and each chain’s first intersection event
is computed using NextEvent and added to the event
queue. The depth of the new region between C; and C,

- 65 -

I Preprocessing Let p; be the rightmost vertex
of P. Form PE by reflecting P around p;. Ini-
tialize a priority queue @ by adding every point
¢i € S to the queue as an event of type 1.

II. Line Sweep

1. WHILE not Empty(Q) DO

2. Remove and process events as described in
Section 4.1.

Figure 3: Algorithm 2

is one greater than the depth of the region into which the
initial point of the consecutive chains was inserted. The
original region is split into two regions.

Type 2. Last Vertex Likewise, the final (rightmost)
vertex of a polygon also forms an event. This event
ends two polygon chains C; and C,. Here a region ends,
and the neighbor regions on both sides are merged to
form a single new region. In doing so, a new pair of
chains—call them Cj; and Cy,—becomes adjacent in the
tree. We therefore must check NextEvent(Cy;, CT) and
NextEvent(Cyy, CT) and add them to the event queue.

Type 3. Chain Intersection A third and final type of
event is the intersection of two polygon chains C; and C.
In this case, the two chains swap order in the tree, and
each must be checked using NextEvent. What happens
to the depth of the regions is a little complicated and may
be divided into three subcases. If two upper or two lower
chains intersect, then the depths of the regions remain the
same. If an upper chain intersects with a lower chain, then
the depth of the region increases or decreases by 2: in case
the upper chain had lower y-value before the intersection
and a higher y-value after the intersection, the depth of
the region increases by 2; and in case the lower chain
had lower y-value before the intersection and a higher y-
value after the intersection, then the depth of the region
decreases by 2.

The second algorithm is presented in Figure 3.

4.2 Analysis

By Lemma 7, the number of events of is O(nk). The event
queue can be managed at a cost of O(log(nk)) = O(log n)
time per event. There are at most 2n active chains at
any time, so operations on the trees of chains require
O(logn) time also. We saw in Lemma 4 that intersec-
tions of two translations of a convex polygon can be com-
puted in O(log m) time. We modify this algorithm so that
it only reports intersections on the specified subchains
of the polygons. We thus have O(nk) events requiring
O(logn + log m) time per event for a total running time

of O(nklog(nm)) plus O(m) time to preprocess the poly-
gon P

5 Weighted and Bichromatic Sets

The algorithms presented here can easily be extended to
a more general version of the problem. Consider a set
S where each point ¢; is given a weight W(g;). Instead
of maximizing the number of points covered, we want to
maximize the total weights of all points covered. If Vi :
1<i<n:W(g)>0,then Lemma 1 still applies and the
algorithms run with no modifications.

However if W(g;) < 0 for some points in the set, then
it is possible that there is no translation that maximizes
the total weight of the points covered and is in translation
stable placement. However for each translation 7 with a
negatively weighted point ¢; on the boundary, we may look
for a “nearby” translation 7, that contains the same points
but does not contain ¢;. The same idea can be applied
in the degenerate case where multiple points lie on the
boundary, though if there are more than one negatively
weighted points on the boundary then the ¢ translation
will not necessarily exist. Thus with minor modifications,
both Algorithms 1 and 2 can be used to solve Problem 2
in the same running times.

6 Summary

We have provided two asymptotically fast solutions to the
problem of computing a translation of a given polygon
P containing the maximum number of points of a given
point set S. The faster of the two algorithms requires
O(nklog(km) + m) time which is asymptotically faster
than all previously known solutions. The algorithms are
conceptually simple, using either a plane sweep or an an-
chored sweep. They are also self-contained except for the
use of the tentative prune-and-search technique of Kirk-
patrick and Snoeyink [9] for computing intersections of the
polygons in O(logm) time, beating the more straightfor-
ward nested binary search which would require O(log® m)
time. The algorithms also generalize at no cost in running
time to the bichromatic variant of the problem, and also
to the more general weighted point set problem.

6.1 Extensions and Open Problems

There are three obvious generalizations of Problem 1: we
may extend to arbitrary simple polygons, to containment
by general rigid motion, or containment by polyhedra in
higher dimensions.

6.2 Acknowledgements

This paper benefited from discussions with Scot Drysdale,
Dan Halperin, Matthew Katz, and others at the 10th
ACM Symposium on Computational Geometry, Stony
Brook NY, June 5-8 1994, and also from a discussion with
Jack Snoeyink.

- 66 -

References

[1] B. Chazelle “The Polygon Placement Problem,”
in Advances in Computing Research: volume 1

ed. F. Preparata JAI Press (1983) 1-34.

[2] B. Chazelle and D.T. Lee “On a Circle Place-
ment Problem,” Computing 36 (1986) 1-16.

[3] S. Chandran and D. Mount “A parallel al-
gorithm for enclosed and enclosing triangles,”
IJCGA 2:2 (1992) 191-214.

[4] A. Datta, H.P. Lenhof, C. Schwarz, and M.
Smid “Static and dynamic algorithms for k-
point clustering problems,” Proc. Srd Workshop
Algorithms and Data Structures Lect. Notes in
Comp. Sci. 709 Springer, NY (1993) 265-276.

[5] D. Eppstein and J. Erickson “Iterated nearest
neighbors and finding minimal polytopes,” Disc.
and Comp. Geom. 11 (1994) 321-350.

[6] A. Efrat, M. Sharir, and A. Ziv “Comput-
ing the smallest k-enclosing circle and related
problems,” Comp. Geom.: Theory and Appl. 4
(1994) 119-136.

[7] V. Klee and M.L. Laskowski “Finding the small-
est triangles containing a given convex polygon,”
J. Alg. 6 (1985) 359 375.

[8] K. Kedem, R. Livne, J. Pach, and M. Sharir
“On the union of Jordan regions and collision-
free translational motion amidst polygonal ob-
stacles,” Disc. and Comp. Geom. 1 (1986) 59~
71.

[9] D. Kirkpatrick and J. Snoeyink “Tentative
prune-and-search for computing fixed-points
with applications to geometric computing”.

[10] H.P. Lenhof and M. Smid “Sequential and par-
allel algorithms for the k closest pairs problem,”
1993.

[11] J. O’Rourke, A. Aggarwal, S. Maddila, and M.
Baldwin “An optimal algorithm for finding min-
imal enclosing triangles,” J. Alg. 7 (1986) 258—
269.

[12] M.H. Overmars and C.K. Yap “New upper
bounds in Klee’s measure problem,” SIAM J.
Computing 20 (1991) 1034-1045.

[13] F.P. Preparata and M.I. Shamos
Computational Geometry: an Introduction,

Springer (1985).

[14] M. Sharir “On k-sets in arrangements of curves
and surfaces,” Disc. and Comp. Geom. 6 (1991)
593-613.

[15] G.T. Toussaint “Solving geometric problems
with the rotating calipers,” Proc. IEEE MELE-
CON ’83.

