104

An Efficient Solution to the Zookeeper’s Problem

John Hershberger Jack Snoeyink*
Mentor Graphics Corporation University of British Columbia

Abstract

Chin and Ntafos introduced the “Zookeeper’s Problem” and gave a quadratic-time
algorithm to solve it. We show how to improve their algorithm to O(nlog®n).

1 Introduction

The Zookeeper’s Problem is a shortest path problem introduced by Chin and Ntafos [1].
The problem is this: Given a simple polygon (the zoo) with a set of k disjoint convex
polygons (the cages) inside it, each sharing one edge with the polygon, find a shortest cycle
that starts at a given polygon vertex p (the zookeeper’s chair), touches at least one point of
each cage, and returns to p. See Figure 1. This path is the one the zookeeper should follow
to feed all the animals while walking as short a distance as possible.

Figure 1: An instance of the zookeeper’s problem

Clearly, the optimal path must visit the cages in the order they appear along the polygon
boundary, since otherwise it would cross itself and could be shortened. Let P be the
combined polygon consisting of all zoo and cage edges reachable from the zookeeper’s.chair,

“Supported in part by an NSERC Research Grant and a B.C. Advanced Systems Institute Fellowship.

and define |P| to be n. Chin and Ntafos have shown how to find an optimum zookeeper’s
path in O(n?) time under the Real RAM machine model. In this note we show how to solve
the problem in O(nlog?n) time under the same model.

2 Background

The algorithm of Chin and Ntafos is based on the reflection principle: if ¢ and b are two
points on the same side of a line £, the shortest path that visits a, ¢, and b in that order can
be computed by reflecting b across £ and drawing the straight line segment a¥ from a to
the reflection b’ of b. The shortest path in the original setting is obtained by reflecting the
part of ab’ that connects £ to the reflection b, so that it connects £ to b. More generally, to
find a shortest path from a to b that visits a line segment s, with a and b on the same side
of the line defined by s, compute the shortest path that passes between the endpoints of s
and connects a to the reflection ¥'. See Figure 2.

Figure 2: The reflection principle

The optimal zookeeper’s path touches at least one segment of each cage. If we know
some segment e; that the optimal path touches on the ith cage (the optimal path may touch
more than one), then we can use the reflection principle at each e; to compute the path
exactly. Let m = (e1,..., ex) be the combinatorial type of the path. Consider the topological
“polygon” P; we get by combining k copies of P, alternately mirror-reversed and normally
oriented, with copy ¢ + 1 rotated and translated so that the image of e; coincides with the
image of e; in copy i; both images of e; are erased to connect the interiors of copies ¢ and
¢+ 1. The resulting 2-manifold is simply connected; we can find shortest paths inside it by
applying simple-polygon algorithms [4].

The observation of the previous paragraph reduces the zookeeper’s problem to that of
finding the combinatorial type of the optimal path. Chin and Ntafos do this by exploiting
a monotonicity property of zookeeper’s paths. They pick one combinatorial path type and
modify it incrementally to get the optimal path type. They show that the length of the
best path of the current type decreases monotonically, and that the type changes only O(n)
times before the optimal path type is found.

At a high level, the algorithm of Chin and Ntafos is as follows:

1. Orient the boundaries of odd-numbered cages clockwise and the boundaries of even-
numbered cages counterclockwise; this gives each cage edge a head and a tail.

105

106

2. Initialize the path type m to be the one that includes the first edge of each cage (the
one with no predecessors).

3. Compute the shortest path path(w) from the zookeeper’s chair to its image inside the
topological polygon Pj. '

4. While path(7) passes through the head of some e; € 7 that is not the last edge on
cage 7 do

(a) Replace e; in 7 by its successor on the boundary of cage i.
(b) Compute the shortest path path(rw).

Because each cage edge may be deleted from the path type at most once, there are
O(n) changes to the path type. Chin and Ntafos show that the length of path(w) is non-
increasing during this process, and that the process ends by finding the optimal path type.
They show that each shortest path can be computed in O(n) time, and so the process finds
the optimal zookeeper’s path in O(n?) time. The naive algorithm would run in O(n3) time,
since |P;| = ©(kn) = O(n?).

3 Our contribution

We are able to compute each shortest path in O(log? n) time, which reduces the time of Chin
and Ntafos’s algorithm to O(nlog?n). We use the shortest-path query structure of Guibas
and Hershberger (2, 3]. In O(n) time we preprocess the polygon (P, not the O(n?)-size 2-
manifold Pr) so that we can answer two-point shortest-path queries in O(log n) time. More
particularly, we can compute an hourglass for any two edges of the polygon in O(log n) time.
Updating the shortest path in P, will involve computing at most O(logn) hourglasses.

3.1 Hourglasses

The hourglass defined by two polygon edges is the region of the polygon interior bounded
by the shortest paths connecting the endpoints of the edges. See Figure 3.

Figure 3: An open hourglass and a closed hourglass

Hourglasses are of two types, open and closed. An open hourglass is bounded by its
two defining edges (say e and €’) and by two convex chains that bulge toward the hourglass

interior. The two chains are arbitrarily called the upper and lower chains. There is at least
one line that connects e to e’ and separates the upper and lower chains. An hourglass
is closed if there is no line segment that connects e to e’ and lies completely inside the
polygon. The interior of a closed hourglass has two components, a funnel F(e,a) adjacent
to e and a funnel F(¢’,a’) adjacent to ¢’. The funnel F(e,a) is bounded by e and by the
two convex shortest paths from a point a (the funnel apez) to the endpoints of e. F(e',a’)
is defined similarly. The two funnels are joined in the closed hourglass by the shortest path
connecting a to o' inside the polygon. (More generally, a funnel F(e,p) is defined by the
shortest paths from p to the endpoints of e; p need not be the funnel apex, i.e., the vertex
where the shortest paths separate.)

An open hourglass is represented by a pair of binary trees, one for the upper chain and
one for the lower chain. An hourglass is the concatenation of two sub-hourglasses. At the
root of the tree for the upper chain is the common tangent between the upper chains of
the two sub-hourglasses (the bridge edge); the left and right subtrees represent the upper
chains of the sub-hourglasses. The structure of the tree for the lower chain is analogous. In
a closed hourglass, the funnel chains are represented similarly.

An hourglass represents all shortest paths between the two edges. In the usual polygon
setting in which hourglasses are used, one computes hourglasses between diagonals of the
polygon, and concatenates hourglasses to make new hourglasses: given an hourglass between
two diagonals a and b, and another between b and ¢, with diagonal b separating a from c,
we can compute the hourglass between diagonals a and ¢ in O(logn) time by computing a
constant number of common tangents between the convex chains that form the hourglass
boundary.

3.2 Reflected hourglasses

As mentioned before, the combinatorial type 7 of a path path(r) is a sequence of cage edges
(e1,-..,ex), where e; is on the ith cage. We denote the hourglass defined for edges e; and
ei+1 by Hx(i,i+ 1). In order to extend this hourglass notation to the polygon P, which
is obtained by reflecting, translating, and rotating the original polygon P, we augment the
hourglass structure to store the necessary transformations.

Define Hx(%,7) to be the hourglass that links a cage edge e; to a cage edge ej, applying
the reflection principle at each cage edge ey, for i < h < j. We represent H,(,7) with e; in
its original position, and e; reflected, rotated, and translated to some image position. We
store with the hourglass the homogeneous coordinate transformation matrix needed to move
e; from its natural position to its image’s position in H,(4, j), including the reflection at e;j.
When we concatenate two hourglasses Hy (i, h) and Hy(h, j), we transform coordinates from
the second hourglass Hy(h,j) into the frame of the first using the transformation matrix
stored with the first. (For hourglasses that are properly contained in some H(i,i+1), the
identity matrix is stored.) '

To concatenate two hourglasses, we must compute common tangents between pairs
of convex chains, one chain in each hourglass. Computing common tangents requires us
to make tests based on the coordinates of triples of points. The points we use are the
endpoints of the bridge edges stored at the subtree roots of each hourglass. We compute
the coordinates of these points in the frame of reference of the hourglass that we are trying

107

108

to construct. The transformation matrix needed to convert a sub-hourglass’s coordinates
into the top-level frame of reference is the product of a sequence of transformation matrices.
Each hourglass node has a transformation matrix associated with it; the product sequence
for a node v is obtained by taking, in top-to-bottom order, the matrices associated with left
children of the path from the root to v. Because the points we test belong to a descending
sequence of tree nodes, we can maintain a current transformation matrix at each step.
Whenever we descend into the right subtree of the current node v, we update the current
matrix by multiplying it by the matrix of v’s left child.

3.3 Paths as degenerate hourglasses

The optimal zookeeper path is equivalent, via the reflection principle, to a shortest path that
starts from p, goes through the hourglass H,(1, k), and ends at the image of p transformed
by the matrix associated with H(1,k). Once the hourglass H.(1, k) and its transformation
matrix are known, the image of the shortest path can be found in O(logn) time as follows:
compute the funnel F(e;,p) from p to e; and the funnel F(e,p) from e; to p; transform
the latter funnel using the matrix of Hr(1,k); concatenate F(ey,p), Hr(1,k), and the
transformed image of F(er,p). This produces the shortest path path(w) as a degenerate
“closed hourglass” from p to p. By abuse of notation, we could call this degenerate hourglass
H,(0,k +1). There are at most O(n) edges in path(n) = H.(0,k + 1), since the zookeeper
path turns only at edges and vertices of P and visits each edge or vertex at most once. The
edges of path(m) can be produced in O(n) time [2, 3]. We show how to compute path(m)
in O(nlogn) time, how to use path(w) to find where 7 should change, and how to update
path(m) in O(log?n) time when 7 changes.

We build path(n) = Hr(0,k + 1) by bottom-up merging according to a complete binary
tree with the hourglasses H(¢,% + 1) at the leaves. The transformation matrix T'(z,7 + 1)
associated with Hy(¢,% 4+ 1) is the matrix that reflects the plane across the line supporting
ei+1. Whenever we concatenate two hourglasses H.(i,h) and H,(h,j), we multiply their
transformation matrices. Each concatenation takes O(logn) time, and there are O(n) of
them, so the total time to build the initial hourglass is O(nlogn).

The edges e; and e;;; are directed oppositely on the boundary of H,(i,i + 1), one
clockwise and one counterclockwise. Let us define the upper chain of hourglass H, (i, + 1)
to be the chain incident to the heads of the two edges, and the lower chain to be the one
incident to the tails. Observe that the transformation matrices ensure that all the upper
chains lie on one side of H,(1,k) and all the lower chains lie on the other side. Any edge e;
whose head lies on path(r) is an edge that can be replaced in the path type 7 by its successor
e;. For each hourglass, we maintain a list of edges e; whose heads are on the upper hourglass
chains (these may belong to path(r)), and another of edges whose heads are on the collapsed
part of a closed hourglass (these definitely will belong to path(w)). When we concatenate
two hourglasses, it is not difficult to compute the lists for the resulting hourglass in the same
O(logn) time required for the rest of the concatenation operation (we represent the lists
with balanced binary trees). The shortest path path(r) is just a degenerate hourglass, and
we can select from its “definite” list an edge that should be replaced in 7 by its successor.
If an edge e; has its head on the final shortest path, but it is the last edge of its cage, then
we cannot replace it by its successor. In this case we remove e; from all the lists, so it will

no longer be considered for replacement.

When the path type 7 changes to some 7', it is because one of the edges e; has been
replaced by its successor e;. The hourglasses in the merge tree that need to be updated
are those that are incident to e; or contain it in their interior—namely, the two hourglasses
Hqr(i = 1,3) and Hr(i,i + 1), plus their O(logn) ancestors in the merge tree. By merging
bottom-up, we transform the hourglass Hr(0,k + 1) = path(n) into Hp(0,k + 1) = path(x')
in O(log?n) time.

4 Conclusion

We have shown how to reduce the time needed for the inner loop of the zookeeper algorithm
to O(log®n). As Chin and Ntafos show, there are only O(n) executions of the inner loop,
so our data structure reduces the running time of the zookeeper algorithm to O(n log? n).

Remark: Zookeeper algorithms based on the reflection principle may be far from practical.
They are stated using the Real RAM model of computation, which is standard for com-
putational geometry algorithms, but that model seems particularly inappropriate. These
algorithms require the multiplication of O(n) transformation matrices. If the input coor-
dinates have L bits of precision, the transformation matrices will have O(nL) bits. If the
computation is performed using finite-precision floating point, the numerical inaccuracy in-
herent in the computation is likely to cause errors in the combinatorial path structure in
all but the smallest examples.

References

[1] W. Chin and S. Ntafos. Optimum zoo-keeper routes. Congressus Numerantium, 1989.

[2] L. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon.
Journal of Computer and System Sciences, 39(2):126-152, 1989.

[3] J. Hershberger. A new data structure for shortest path queries in a simple polygon.
Information Processing Letters, 38:231-235, 1991.

(4] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy
class. In Proceedings of the 2nd Workshop on Algorithms and Data Structures, pages
331-342. Springer-Verlag, 1991. Lecture Notes in Computer Science 519.

109

