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Interval Graphs as Visibility Graphs of Simple Polygons Part I:
Parachutes

Anna Lubiw*

1 Introduction

Given a simple polygon, its visibility graph has the
same vertex set as the polygon, with two vertices
joined by an edge iff they “see” each other in the
polygon—i.e. the line segment joining them stays en-
tirely inside the polygon. The problem of character-
izing or recognizing those graphs that are visibility
graphs of simple polygons has been open for some
time now, see [O87] and [093]. The problem re-
mains open even when the Hamiltonian cycle that
must form the polygon boundary is specified in the
graph. Ghosh [G88] gave some necessary conditions
for this case.

In this paper we concentrate on the class of interval
graphs. One reason for interest in interval graphs is
the nice characterization of visibility graphs of spiral
polygons as a subset of interval graphs given by Ev-
erett and Corneil [EC90]. We define a parachute to
be a special interval graph with a specified Hamilto-
nian cycle. Our main result is a characterization and
a polynomial-time algorithm to test if a parachute is
the visibility graph of a polygon with the specified
cycle as its boundary. The class of parachutes is rich
enough to require going outside the class of spiral
polygons.

A parachute is a graph G together with a Hamilto-
nian cycle H = {u,vy,...,v,} where u is a universal
vertex (adjacent to all other vertices) and where, if
(vi, vj) is an edge with i < j, then the set {v;,...,v;}
forms a clique in G. The chain vy, ..., v, is called the
parachute chain.

In order to decide which parachutes are visibility
graphs, we will begin in section 2 by characterizing
parachutes in terms of interval systems. Essentially,
we show that parachutes are interval graphs whose in-
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tervals (apart from the universal one) can be ordered
so that as we move from one interval to the next, the
right and left endpoints never move backward.

More formally, a clique interval system is an order-
ing of the maximal cliques of an interval graph such
that for every vertex v the set of maximal cliques to
which v belongs occurs consecutively in the ordering.
Let L(v) denote the first clique of the ordering con-
taining vertex v, and let R(v) denote the last clique
of the ordering containing vertex v. Then v corre-
sponds in the interval system to the interval with left
endpoint L(v) and right endpoint R(v).

With respect to a clique interval system, vertex v
is before w, v < w, if R(v) < R(w) and L(v) < L(w).
Note that this is a partial order, not a total order.
In particular, intervals ¢ and j with L() < L(j) and
R(j) < R(i) are not ordered in <. In this case we
say that ¢ dominates j, or that 7, j are a domination
pair. If an interval system has no domination pairs
then the ordering < provides a total order (arbi-
trarily break ties for equal intervals). We call this
a progressive ordering of intervals. In section 2 we
show that parachutes are exactly the graphs with a
clique interval system where the intervals (other than
the universal one) have a progressive ordering.

Domination pairs seem particularly interesting in
characterizing interval visibility graphs. Everett and
Corneil, in their characterization of the visibility

- graphs of spiral polygons as a subclass of interval

graphs, showed that a pair ¢,j with j dominating
i can only occur with ¢ in the reflex chain and j in
the convex chain. Forbidding all domination pairs
gives the class of proper interval graphs. In his thesis
[C92], Seung-Hak Choi showed that any 2-connected
proper interval graph is the visibility graph of a spi-
ral polygon, and he characterized exactly which spi-
ral polygons are obtained this way. Domination pairs



are permitted in parachutes that are visibility graphs,
but only in a restricted way: the universal interval is
the only interval that may dominate other intervals
(see section 2).

In order to characterize which parachutes are vis-
ibility graphs, we will identify a structure called a
knot, which we will show can only be realized as
a convex chain in a polygon. We will show that a
parachute is a visibility graph iff it has at most one
knot and that knot has a restricted form.

Let ¢1,...,cm be a clique interval system. A knot
is an interval sub-system consisting of cliques C and
intervals Z where C is a maximal sequence of maximal
cliques, ¢, ..., c; with j > i such that each clique in C
has at least three vertices and any pair of consecutive
cliques in C has at least two vertices in common, and
where Z consists of all vertices in all cliques of C.

We will need a few more definitions: A private ver-
tex of a graph is a vertex that belongs to exactly one
maximal clique. A link vertex belongs to exactly two
maximal cliques, and a star vertex belongs to three
or more maximal cliques. (In terms of a clique in-
terval system, private intervals have length one, link
intervals length two, and star intervals length at least
three.) Two vertices are duplicate if they are in pre-
cisely the same set of cliques.

A link-chain is a path of vertices (no duplicates
allowed) where the internal vertices are link vertices
and the first and last vertices are either link or pri-
vate. A private-link chain is a path obtained from a
link chain by the possible insertion of private vertices
(which may be duplicate) between successive vertices.

We will make use of Ghosh’s necessary conditions
for a graph plus Hamiltonian cycle to be a visibility
graph.

Vertex v; is a blocking vertezx for non-adjacent pair
(vi,vr) i < j < k, if every vertex along (v;...,vj-1)
is non-adjacent to every vertex along (vj41,...,vx).
Two non-adjacent pairs (v, w) and (v, w') are separa-
- ble with respect to vertex a if v and w are encountered
before v/ and w’ along the Hamiltonian cycle when
traversed from a. Ghosh [G88] proved that if graph
G with Hamiltonian cycle H is the visibility graph of
a polygon with boundary H then they satisfy three
necessary conditions. We will need only conditions 2
and 3:

e Condition 2. Every non-adjacent pair has a
blocking vertex (which must be reflex).
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e Condition 3. If two non-adjacent pairs have
a as their sole blocking vertex, they cannot be
separable with respect to a.

2 Characterizing Parachutes
in Terms of Clique Interval
Systems

In this section we give a characterization of
parachutes in terms of clique interval systems. In
the remainder of the paper we will use this charac-
terization to decide when a parachute is a visibility
graph.

Let graph G be a parachute with Hamiltonian cycle
H = {u,vy,...,vp}. By definition, whenever (v;,v;)
is an edge, ¢ < j, the set of vertices {v;, vi41,...,v;}
forms a clique. Let ¢ be a maximal clique of G. Then
¢ contains u. Not counting u, let the first vertex of ¢
be v; and the last vertex v;. Then ¢ must be exactly
{u,vi,...,v;}. Observe from this that two maximal
cliques cannot have the same first vertex. Thus we
can order the maximal cliques of G by their first ver-
tices. It is easy to see that this ordering of cliques
provides a clique interval system for G. This will be
called the inherent clique interval system provided
by G and H. (Note that we can efficiently find the
inherent clique interval system.) From the ordering
v1,...,Un specified in H we obtain an ordering of the
intervals (except one universal interval). It is easy
to see that this ordering is a progressive ordering of
intervals.

The above discussion proves:

Theorem 2.1 Let G be a parachute with Hamilto-
nien cycle H = {u,vy,...,v,} wherevy,...,v, forms
a parachute chain. The inherent clique interval sys-
tem for G and H has a universal interval correspond-
ing to u, and its remaining intervals, corresponding to
vy,...,U, are progressively ordered. Conversely, any
clique interval system whose intervals, apart from one
universal interval, can be progressively ordered, has
an interval graph that is a parachute.

Since a progressively ordered set of intervals cannot
contain a domination pair, this implies that in the
inherent clique interval system of a parachute, the
only interval that can dominate another interval is a
universal interval.
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3 Which Parachutes are Visi-
bility Graphs

In this section we characterize the parachutes that are
visibility graphs. Section 3.1 shows that a knot-free
parachute is a visibility graph of a simple polygon.
Section 3.2 shows that a parachute that is a visibility
graph can have at most one knot, and that knot must

have a special structure. Section 3.3 shows how to .

construct a simple polygon out of a parachute with
such a knot.

3.1 Knot-Free Parachutes

In this section we show that a knot-free parachute’s
parachute chain is a private-link chain. Next we show
that such a parachute is the visibility graph of a sim-
ple polygon.

Lemma 3.1 In a parachute any star vertexr other
than the universal vertez u is part of a knot, along
with all the cliques the star is contained in.

PROOF Let c; be a clique containing a star vertex
s # u, where in the inherent clique ordering system
¢; is neither the first nor the last clique containing
s. Since the inherent clique interval system has a
progressive ordering, ¢; does not contain a private
vertex. Hence there must exist two vertices v and w
such that c; is the left endpoint of interval v and the
right endpoint of interval w. Thus ¢;—y N¢; 2 {w,s}
and ¢; N¢i+1 2 {v,s}. In addition, since all cliques
are maximal, some interval must end at ¢;—;, and
some interval must start at ¢;41. Thus each of the
cliques {c¢;—1, ¢, ¢i+1} contains at least three vertices,
and each consecutive pair has at least two vertices
in common. Thus some knot contains s and all the
cliques that contain s. m]

Lemma 3.2 In a parachute any duplicate pair of link
vertices are part of a knot, along with both the cliques
they are contained in.

PROOF Similar to the above. m]
.These two lemmas together imply:

Theorem 3.3 A knot-free parachute’s parachute
chain is a private-link chain.

Based on this characterization we can prove that
every knot-free parachute is the visibility graph of a
simple polygon. We first consider a parachute whose
parachute chain is a link chain. Such a parachute is
shown to be the visibility graph of an umbrella, of a
single-mast, and of a twin-mast.

An umbrella is a spiral polygon, star-shaped from
its sole convex vertex (see Fig. 1). A twin-mast is
depicted in Fig. 2. A single-mast is formed from a
twin-mast by coalescing v; and v;4;. All three of
these polygon types are star-shaped from u and every
other vertex sees only its predecessor and successor.
Thus in all cases the visibility graph is precisely a
parachute whose parachute chain is a link chain.

In the other direction, if we are given a parachute
whose parachute chain is a link chain it is easy to
construct a corresponding umbrella. Alternatively,
we can construct a twin-mast: pick two consecutive
link vertices v;, v;4; along the link chain and make a
rectangle consisting of {vi,vi,vi+1,vn}. Place u be-
low the two diagonals thereby preventing v; from see-
ing v, and v;4; from seeing v;. Refer to Fig. 2. Next,
position (vs,...,v;—1) along an arc A; out of sight of
vi41. Similarly, position (vi4+2,...,vn-1) along an arc
A, out of sight of v;. It is straightforward to check
that the resulting polygon is a twin-mast. A single-
mast can be constructed in a similar fashion.

We therefore have the following result.

Theorem 3.4 A graph G with Hamiltonian cycle H
is the wistbility graph of an umbrella or a single-
or twin-mast if and only if it is a parachute whose
parachute chain is a link chain.

We now move on to parachutes whose parachute
chain is a private-link chain. We must modify the
above constructions to allow private vertices.

An ertended-umbrella, shown in Fig. 3, is an ex-
tension of an umbrella where we may insert between
two consecutive vertices l; and ;4 of the reflex chain
of the umbrella, a convex chain of vertices which are
not visible from any reflex vertex other than {; and
li+1. We can do this by inserting the convex chain
inside a pocket determined by the wedge u,l;,liy;.
See Fig. 3.

The same idea works for extended-masts, either
twin or single, where convex chains reside in pockets
determined by two consecutive vertices taken from
(v1y-.-,vn). See Fig. 4. Care must be taken for the



consecutive pair v;,v;41, and, in case they are con-
secutive, for the pairs vy, v; and v;4+1,v,. We obtain:

Theorem 3.5 A graph G with Hamiltonian cycle
H is the visibility graph of an extended-umbrella or
an extended single- or twin-mast if and only if it is
a parachute whose parachute chain is a private-link
chain.

3.2 Parachutes That Are Knots

In this subsection we show that a parachute that
is a visibility graph has at most one knot, and prove
that this knot must have a special form.

Lemma 3.6 A knot can only be realized, if at all, as
the visibility graph of a convez chain.

PROOF For any three consecutive vertices
Vi, Vit1,Vi+2 In a knot, there is an edge (vi,vit2),
because every clique in the knot has at least three
vertices. a

It is easy to show that every knot has at least one
pair of non-adjacent vertices. Ghosh’s conditions con-
strain the blocking vertex:

Lemma 3.7 Only the universal vertex may be a
blocking vertez for a pair of non-adjacent vertices in
a knot in a parachute.

PROOF Let v;, vj be the non-adjacent pair, with ¢ <
j. This pair cannot be blocked by a vertex between
v; and vj because they are all part of the knot, which
can only be realized as a convex chain.

If there is a blocking vertex v with k not between 2
and j, then no vertex between v; and vy in the Hamil-
tonian cycle can be adjacent to any vertex between
v;, and v; in the Hamiltonian cycle. But the universal
vertex must be in one of these two chains. Thus only
the universal vertex can block. ]

Lemma 3.8 If a parachute contains two or more
knots, it is not a visibility graph.

PROOF We will use Ghosh’s conditions to show
that the universal vertex cannot block two knots.
Let K;, Ko be two knots of the parachute G with
Hamiltonian cycle H. Assume without loss of gen-
erality that the vertices of K; precede the vertices
of K, along H (they may have one vertex in com-
mon). As observed earlier, there exist two pairs of
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non-adjacent vertices (vy,w;) in K; and (va,ws) in
Ka, v1 < w; <X v9 < wy. By Lemma 3.7, each of these
pairs can only be blocked by u, the universal vertex.
However, note that the two pairs are separable with
respect to u. Thus by Gosh’s third condition, (G, H)
is not a visibility graph of a simple polygon. m]

If K is a knot in a parachute, and the cliques of K
are ci,...,c; then a vertex of K that is neither in c;
nor c; is called an internal vertex of the knot.

Lemma 3.9 If a parachute is a visibility graph then
it cannot have a knot with an internal vertez.

PROOF We apply Ghosh’s conditions once more.
Suppose G with Hamiltonian cycle H is a parachute
with a knot K, consisting of cliques ¢;,...,c;j, that
has an internal vertex v. There exist vertices ¢ € ¢;
and y € cj, such that v is adjacent to neither z nor y.
By Lemma 3.7 the non-adjacent pairs (z,v) and (v, y)
have u as their sole blocking vertex. But the two pairs
are separable with respect to u, so by Ghosh’s third
condition (G, H) is not a visibility graph. a

We will now consider the case of a clique interval
system consisting of a single knot (with no internal in-
terval) plus one universal interval. We will show that
this corresponds to a visibility graph, by applying the
characterization of visibility graphs of spiral polygons
given by Everett and Corneil [EC]. From their result
we will get a particular form of spiral polygon which
we will use later when we allow the clique interval
system to be more than a knot.

Lemma 3.10 Suppose we have a clique interval sys-
tem whose intervals consist of a knot with no internal
interval plus one universal interval. Then the corre-
sponding interval graph is a visibility graph of a spiral
polygon with exactly one reflex vertex.

PROOF We will apply the results of Everett and
Corneil [EC] who gave necessary and sufficient condi-
tions for an interval graph G with a specified Hamil-
tonian cycle H to be a visibility graph of a spiral poly-
gon, with H as the polygon boundary. If the Hamil-
tonian cycle ‘H is (z,7r1,...,75, ¥,k lk=1,...,11,Z)
where R = (z,r1,...,7j,y) is the proposed reflex
chain, and L = (y,{,...,l1,z) is the proposed con-
vex chain, their conditions are that:

1. R spans G.

2. L is straight.

3. G has no outlying vertices.
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In our case ¢ and y are private vertices in the first
and last clique, respectively; j is 1 and 7 is the uni-
versal vertex u; and [y,...,I; are the remaining ver-
tices in progressive order.

The condition that R spans G means that z and
y are in the first and last cliques, respectively, each
vertex in ry,...,r; is in at least two cliques, and for
each pair of consecutive cliques, ¢, ¢/, there is exactly
one vertex r; in both ¢ and ¢’. In our case this condi-
tion is satisfied, because rq, being a universal vertex,
is in all cliques.

The condition that L is straight is precisely the con-
dition that Iy,...,I; is a progressive ordering. Thus
‘this condition holds in our case.

Finally, an outlying vertex is a vertex not in R
whose interval is dominated by another interval. In
our case, the fact that the knot consists of all the
cliques, and has no internal intervals means that the
graph has no outlying vertices. Thus all three of the
Everett-Corneil conditions are met, and our graph is
the visibility graph of a spiral polygon with reflex
chain (z,u,y)—in other words with a single reflex
vertex. [m]

3.3 Parachutes With Knots

We are ready for our main theorem:

Theorem 3.11 A parachute is a visibility graph iff
it has at most one knot and that knot has no internal
vertices.

The necessity of these conditions has been estab-
lished in the previous subsection. It remains to con-
struct a polygon whose visibility graph is a parachute
with at most one knot and no internal vertex in that
knot. We first examine the structure surrounding a
knot in a parachute.

Lemma 3.12 Let K be a knot consisting of cliques
Ciy...,¢j. The only possible vertices in K but also in

cliques outside K are one link vertez in c;—1 Nc; and

one link vertez in c; Ncj4r.

PROOF Follows from Lemmas 3.1 and 3.2. a

By Lemma 3.10 the visibility graph of a parachute
consisting of a single knot and a universal vertex is
a spiral polygon with a single reflex vertex. Such a
spiral S can be constructed by the algorithm in [EC].

Assume (vy, . .., v, ) are the vertices of the knot. Since
S is star-shaped from u, the wedge determined by
v, u, v, is empty (Fig. 5).

As we move from v; to v, let v and v’ be the last
vertex visible from v; and the first vertex visible from
v, respectively. Let W, be the open wedge deter-
mined by the two lines through u, v, and v’,v,. See
Fig. 6. Points in W, are hidden from all vertices ex-
cept u and v,. Similarly let W; be the open wedge
determined by the two lines through u,v; and v, v;.

By Lemma 3.12, chains (vy,...,v-1) and
(r41,---,Vn) are private-link chains. First suppose
that these chains are actually link chains. Fix a point
vy in W;. See Fig. 7. Join v to u. Since vy is in the
interior of W; and u sees edge (v;,v1), we can draw a
circular arc A passing through v; and v; visible from
u in the interior of triangle Au,v;, v, and inside W;.
Place (vg,...,v-1) along A. Do the same in W, for
(Vr41y---»r¥n)-

If either (v1,...,v-1) O (Vi41,...,Vn) is actually
a private-link chain, replace the edges along the re-
flex chain by convex chains in pockets as described in
section 3.1.

4 Further Work

More generally, we can begin to deal with any in-
terval graph with a Hamiltonian cycle that can be di-
vided into two progressive chains. (The present work
assumed that one chain had just one vertex.) We di-
vide each progressive chain into trusses and flezes,
structures that slightly generalize knots and private-
link chains. In this general case Ghosh’s conditions
are not sufficient to guarantee a visibility graph—we
have a necessary condition that must be added.
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