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Level Difference of the Reconstructed Arrangement
(Extended Abstract)

Mary Inaba*, Yasukazu Aokif, and Susumu Hasegawat

Abstract

In this paper we consider the problem about level difference between an original arrangement
and arrangements reconstructed from partial information of the original arrangement, motivated
from the learning theory where reconstruction of the arrangement from partial information can be
considered as the inference of a network of threshold functions. If the difference of the level for an
arbitrary point in the space between the original arrangement and the reconstructed arrangements
is small, then even if each hyperplane may be different from the original one, the reconstructed
arrangements consistent with partial information can be used as a good approximation of the
original.

We prove that, given the level information of one point per cell for an unknown simple ar-
rangement of finite set of hyperplanes in the d-dimensional space, the difference of the level of an
arbitrary point between the original arrangement and any reconstructed arrangement, which is
consistent with the level information, is (1) less than or equal to d for general d if the dual graph
of the reconstructed arrangement is same as that of the original arrangement, and (2) less than
or equal to 3 for planar case even if the dual graph of the reconstructed arrangement is different
from that of the original arrangement.

1 Introduction

Using partial information of an unknown arrangement, in the d-dimensional space, how well can we
reconstruct the arrangement? This problem is motivated from learning theory as described in the
following. In the hidden layer of simple 3 layered neural networks, there are n threshold functions
of d inputs and each function passes the value 1 or 0 to the output layer. In the output layer there
is one threshold function which sums up all n inputs passed with multiplying weights, compare the
summation with its threshold value, and returns the value 1 or 0 as the output of this neural network.
Here n threshold functions of d inputs in the hidden layer naturally induces the arrangement A(H)
of the set H of n hyperplanes in the d-dimensional space, and the threshold function of the output
layer can be considered as the level of the cell of the arrangement .A(H) when its weights are simply
1. To infer the threshold functions of such a neural network from sample point information can be
considered as the reconstruction of an arrangement from partial information. If the largest difference
of level of an arbitrary point in the space between the original arrangement and the reconstructed
arrangement is bounded by a small constant, then even if each threshold function, that is, each
hyperplane, inferred from the partial information may be completely different from the original one,
the whole of the threshold functions, that is, the arrangement, consistent with partial information
can be used as a good approximation for the threshold functions.

In this paper, we consider about the arrangement of n hyperplanes and as the partial information
we use the level of points at least one point per each cell. Before stating our results, we first define
terminology.
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Definition of level, level information and error: Let A(H) be the arrangement of a set H of n
hyperplanes in R%. Without loss of generality, we use the d-th axis of R4 for determining high and
low. '

(level) The level L(c) of the cell ¢ is the number of hyperplanes beyond c in the arrangement. The
level I(p, A(H)) of the point p in the arrangement A(H) is L(c) if the point p belongs to the cell
c of the arrangement A(H).

(level information) Given an arrangement A(H) in the d-dimensional space, level information I
of A(H) is a finite set of points in the space, such that one point is selected from each cell of the
arrangement, and each point p is equipped with its level I(p, A(H)). Later, we slightly extend
this “one point per each cell” to “at least one point per each cell”.

(error) Let A(H) and A(H') be two arrangements. The error e(p, A(H), A(H')) of a point p €
R® between two arrangements A(H) and A(H') is defined to be |i(p, A(H)) — I(p, A(H")|.
And the error E(A(H), A(H')) between two arrangements A(H) and A(H') is defined to be
max(e(p, A(H), A(H'))) over all point p in R%.

(consistency) Let I be the level information and A(H’) be an arbitrary arrangement. If every cell
of A(H') includes a point p € I and level information of p is same as I(p, A(H')), the arrangement
A(H') is said to be consistent with the level information I.

Definition of the problem: Here, we define the problem rigorously. Let A(H) be an arrangement
of n hyperplanes in the d-dimensional space, let I be the level information of A(H), and let A(H')
be a reconstructed arrangement consistent with /. Then what is the error E(A(H), A(H')) between
A(H) and A(H")? From now on, we use E instead of E(A(H), A(H')) for simplicity.

Our results: We show that, if A(H) is simple, the error E is less than or equal to d if the dual
graph of A(H) and A(H') are same, and less than or equal to 3 for planar case even if the dual
graph of A(H') is different from that of A(H) (there are arrangements which are consistent with a
given level information and whose dual graphs are different; see Aoki[1])

To prove the latter, we use the tool level-zigzag instead of dual graph and this level-zigzag can
be created only from the level information I. We also show the examples of E = n for the case
that A(H) is not simple, and study the relationship between the error £ and configuration of the
arrangement.

Specifically, in section 2, we consider about the relationship between dual graph and level infor-
mation in the general d-dimensional space. From section 3 we concentrate on the planar case. In
section 3, we introduce the tool level-zigzag and outer-line created from the level information I. We
treat inside of the outer-line and outside of the outer-line separately in section 4 and section 5. Here
we show that if the arrangement is simple, the error is less than or equal to 3 inside the outer-line
and less than or equal to 1 outside the outer-line. As for the non-simple case, if the arrangement has
parallel lines, the error is less than or equal to m + 1 outside of the outer-line and 3 inside, where m
is the maximum number of parallel lines. If more than two lines intersect at one point, the error is
less than or equal to m + 1 and 1 outside, where m is the maximum number of lines intersecting at
one point. And these are easily extended for the combined case.

2 Dual graph and level information

In this section we consider about the relationship between the sample point set and dual graph of
the arrangement.

Let A(H) be an arrangement of n hyperplanes in the d-dimensional space. A dual graph of an
arrangement A(H) is the graph whose vertex set consists of cells of the arrangement and whose edge
set contains an edge cjcs if and only if the cells ¢; and c2 are adjacent in the arrangement.

Observation 1 When each cell of A(H) has one and only one sample point, it is possible to embed
the dual graph G(A(H)) of A(H) in such a way that each vertez of G(A(H)) is on the sample point
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of the corresponding cell. And, this graph can be straight line embedding in the planar case, and
straight k-face embedding for general R®. ,

Let G(A(H)) be the straight embedded dual graph of A(H) as above. Then we can observe the
following.

Observation 2

e Every cell of G(A(H)) forms d cubic shape, but not necessarily convex. Hence, every cell of
G(A(H)) has 2d facets and 2% vertices.

e Inside a cell of G(A(H)), there exists one and only one intersection point, that is, 0-face of

A(H).

o If A(H) is simple, then each closed cell of G(A(H)) has ('f) vertices of level k+1, for 0 <1 < d,
where k is the minimum level of vertez of corresponding cell of G(A(H)), and 0 < k< n —d.

e A hyperplane of the original arrangement A(H) crosses the pairs of opposite facet facing to
each other, so that every hyperplane divides one cubic cell into two cubic cells.

From observation 2 and the fact that every O-face of A(H) can only move inside the cell of
G(A(H)) since all hyperplanes of A(H) is linear, we obtain the following lemma.

Lemma 1 k£ < Il(p) < k+d for any point p in a cell of dual graph G(A(H)) which has vertices from
level k to level k+d.

This immediately implies the following.
Lemma 2 E is less than or equal to d inside the closed cells of G(A(H)).

There is a single open cell in G(A(H)). For this cell we obtain the following.
Lemma 3 If A(H) is simple, E < d — 1 for the open cell of the dual graph G(A(H)).

Proof is omitted due to the space limitations.

Next, we consider about the case that A(H) is not simple, obviously upper bound of E is n from
its definition, and we can construct two types of £ = n example as follows.
1. If all n hyperplanes of A(H) are parallel, then G(.A(H)) becomes zigzag line having no cell, and,

in such case, at infinity, F is n and this attains the upper bound.
2. If all n hyperplanes of A(H) intersect at one point p; and all hyperplanes of A(H') intersect at

a point py which is located a little below p;, then the error e(p, A(H), A(H')) on the point p
between p; and ps is n, hence, E is n.

Here we obtain the following main theorem of this section.

Theorem 1 Suppose the dual graph G(A(H)) of the original arrangement A(H) is same as the dual
graph G(A(H')) of the reconstructed arrangement A(H') which is consistent with the level information
I of A(H). If A(H) is simple then E 1is less than or equal to d, and if A(H) is not simple then
E =n for the worst case, and these are tight.

3 Definition of Level-zigzag and Outer-line

In this section, we introduce the tool level-zigzag and outer-line of the sample point information in
R?, which are intended to play a part of dual graph implicitly. Without loss of generality, we consider
that R2 is the zy-plane, y is used for judging upper or lower, and z is the only remaining axis.

Definition of level-zigzag and outer-line: Let I be a level information of A(H).
(level-zigzag) k-level-zigzag is defined as a zigzag line which connects all k level points of I with
increasing order of z(Figure 1).
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Figure 1: Level-zigzag and outer-line

Then, we have n + 1 k-level-zigzags for 0 < k£ < n, including one point of 0-level-zigzag and
n-level-zigzag. Except 0-level-zigzag and n-level-zigzag, k-level-zigzag has at least 2 endpoints. Let
pi denote the left endpoint of k-level-zigzag and p,r denote the right endpoint of k-level-zigzag for
0 < k < n. Both pjp and pyo (Pin and prn, respectively) denote the same point.

(outer-line) Quter-line is defined as the polygon whose edge is the line between the endpoints py

and py(x+1), and between pr and p,(r41) for 0 < ¢ < n — 1(Figure 1).

Lemma 4 OQuter-line forms a simple polygon.

Proof: Let I be the level information. From section 2, there is the straight line embedding of the
dual graph G(A(H)), and the outer-line is exactly same as the outer-line of embedding. The dual
graph G(A(H)) of the arrangement on R? is planar graph, and the lemma follows. a

The region inside the outer-line can be considered as the collection of the closed cells of the dual
graph G(A(H)) of the arrangement A(H) in section 2. And the region outside the outer-line can be
considered as a single open cell of G(A(H)) of A(H), respectively. In the sequel, we consider inside
and outside of the outer-line separately.

4 Inside the Outer-line

In this section we consider about the level-zigzag and estimate error F inside the outer-line.

In the arrangement A(H), if cells ¢; and cs is in the same level, L(c;) = L(c2), and ¢; and co
have a common 0O-face, cells ¢; and co are called neighbor cells in A(H), and this 0-face is called
inter-neighbor point of neighbor cells.

Observation 3 k-level-zigzag is composed by straight line segments such that each segment has two
endpoints in two neighbor cells from left to right.

From this observation, we obtain the following.

Lemma 5 The level of a point p on k-level-zigzag is k—1 < l(p, A(H')) < k+1 for any arrangement
A(H') that is consistent with the level information I of the original arrangement A(H).

Proof: Let ¢; and ¢z be two neighbor cells such that L(c;) = L(cz) = k, and let p; (p2, respec-
tively) be the point of level information I corresponding to c; (c2, respectively). There exists an
inter-neighbor point z of the cells ¢; and c3. Let z; be a point located a little lower than z, then
l(z, A(H)) =k +1.
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Suppose there exists a point z on the segment p;p2 such that level I(z, A(H)) is greater or equal
to k+ 2. Then between 2; and z, there exists at least one line I, such that 2; is above [, z is below
l., and both p; and ps are above l,. This contradicts the assumption that pip2 is a straight line
segment. With similar way we can prove l(z, A(H)) > k — 1. m]
From this we can obtain the following.

Lemma 6 k-level-zigzag never intersects with other k'-level-zigzag, with k' <k —2 or k' > k+ 2.

Lemma 7 I(p, A(H")) < k+ 1 for any point p above or on k-level-zigzag, and l(p, A(H')) > k-1
for any point p below or on k-level-zigzag.

If the reconstructed arrangement .A(H’) is consistent with I, then each cell of the dual graph G(A(H'))
is consisted from one point on k-level-zigzag, two points on (k + 1)-level-zigzag and one point on
(k + 2)-level-zigzag. This implies the following. '

Lemma 8 Any cell ¢ of A(H) with L(c) = k does not intersect with either (k — 2)-level-zigzag or
(k + 2)-level-zigzag.

Here we observe about the relationship between level-zigzag and dual graph of A(H).

Observation 4 Every line segment which is a component of level-zigzag can be considered as one
of the diagonals of the cell of the straight line embedded dual graph G(A(H)) of A(H). In other
word, every component segment kiky of k-level-zigzag has a corresponding pair of vertez k, and ki,
such that ky (k;, respectively) is on the (k — 1)-level-zigzag ((k + 1)-level-zigzag, respectively), and
segment kyko is incident to two triangles Ak koky and Akikok;. And the square Okykykika, which
is a union of two triangles above, can be considered as a cell of G(A(H)). Hence our result E = 3
can be considered to be caused by the different triangulation for the sample point set in the plane.

This k-level-zigzag is easily extended for another type of level information such that sample point
is selected at least one point per each cell and lemma 7 or 8 follows in such case. But proof is omitted
by the space limitation.

Next we consider about the case that the arrangement A(H) is not simple. If the arrangement
is not simple, the condition is either

1. some lines of A(H) are parallel to each other, or

2. more than 2 lines intersect at one point.
In the case that lines are parallel, all discussions in this section above can be fit for use. And

if m lines intersect at one point p, the cell of G(A(H)) corresponding to p is not a square but a
polygon which has 2m edges and vertices, such that one of the vertices is on the k-level-zigzag (on
the (k + m)-level-zigzag, respectively) and two vertices on k’-level-zigzag for k < k¥’ < k +m.

Thus we obtain the following main theorem of this section.

Theorem 2 Inside the outer-line, if the arrangement A(H) is simple, or even if the arrangement
A(H) and A(H') includes some parallel lines, the error E between the original arrangement A(H)
and reconstructed arrangement A(H') consistent with the level information I is less than or equal to
3. If m lines intersect at one point, where m > 2, the error E is less than or equal to m + 1 inside

the outer-line.

5 OQOutside the outer-line

In this section, we consider about the error E outside the outer-line. Here we use similar technique
which we used at lemma 1 of section 2, but this time, not for a cell of the dual graph.

Observation 5 Outside the outer-line, the lines are sorted by their slope, since no line intersects
outside the outer-line. And one and only one line of H crosses the edge of this simple polygon of the
outer-line.
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Figure 2: Outside of the outer-line

Let pix (pri, respectively) be the left (right, respectively) endpoint of k-level-zigzag. Let ey (e,
respectively) be the edge of outer-line, connecting pi and pyk+1) (Prk and py(r41)) for 0 <i <n—1.
From the above observation, we can obtain the following.

Lemma 9 The line l of H crosses two and only two edges of outer-line. If | crosses ey, then | also
CTOSSES €r(n_k—1)-

Lemma 10 The line ! of H can move only inside the square Opypy(k+1)Pr(n—k)Pr(n—k-1) (Figure 2).

Here, we consider about the diagonals of these squares described above. Let dj be the line through
Pik and p.n_i). Using these diagonal lines, we divide the space outside of the outer-line. Let o
(ork, respectively) be an open region, surrounded by dy, ejx, dk+1 (dn—k, €rk, dn—k—1, respectively).

Lemma 11 The level of point p in oy or op sk ork+1, for0<k<n-—1.

Next we consider about the case that A(H) is not simple.

1. If more than two lines intersect at one point, we get same result for outside of outer-line.
2. If m lines are parallel, m lines can move inside the square py;, Pi(i+m)s Pr(n—i)s Pr(n—i—m)-
Here we obtain the following main theorem of this section.
Theorem 3 Outside of the outer-line, if the arrangement is simple, then the error E is less than or
equal to 1. If the arrangement is not simple, it is enough to consider about the parallel lines. And if
the arrangement has parallel lines, the error is less than or equal to m + 1 outside of the outer-line,
where m is the mazimum number of parallel lines.

6 Future work

To reconstruct an arrangement from the level information I, the time complexity of a naive algorithm
is inevitably exponential. Hence an efficient algorithm is required for reconstructing an arrangement
consistent with . We may also consider about the error of the arrangements in higher dimensional
space. Here the most different point from the planar case is that the level-zigzag facet cannot be
uniquely determined from the level information.
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