358

Tighter Bounds on Voronoi Diagrams of Moving Points
(Extended Abstract)
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Abstract

Given a set S of n points in d-dimensional Euclidean space IE%, d > 2. Thereby k < n of
them are allowed to move continuously along given trajectories while the remaining n — k sites stay
fixed at their position. At each instant, the points of S define a Voronoi diagram which changes
continuously except of certain critical instants, so-called topological events. The classification of
these events as well as their number has been of very recent interest (cf. [1, 2, 4, 6, 8, 10, 11, 14]).
However, up to now there exists a gap of a factor of approximately ©((n — k)!%/2!) between the
best upper bound on the number of topological events and the known worst-case examples. In this
paper we present a new upper bound which approaches this lower worst-case bound up to a factor of
O(min{k?, (n — k)19/2]}). This improves the earlier bound in the case of k € O(/n). For the very
first time, an approach provides matching upper and lower worst-case bounds (at least in the case of
k being some constant).

1 Introduction

The maintenance of geometric data structures over time is the subject of a rising discipline called dynamic
computational geometry.! The present work investigates the number of topological events which appear
in d-dimensional Voronoi diagrams under continuous motions of the underlying sites.

For that, consider a set of n points in d-dimensional Euclidean space, d > 2. Thereby k < n points
move along given trajectories and the remaining n — k sites are fixed at their current position. At
each instant, the points define a Voronoi diagram which changes continuously except of certain critical
instants, so-called topological events. The classification of these events has been of recent interest and
they are well-understood in the plane [4, 6, 8, 11], in higher-dimensional spaces [1, 2] as well as in planar
higher-order Voronoi diagrams [14]. Actually, in all these cases there exist algorithms which maintain
the Voronoi diagram in O(logn) time per event which is not only independent of the dimension and the
order of the Voronoi diagram but also worst-case optimal [13]. '

Up to now, the best upper bound on the number of topological events which appear in classical
nearest-neighbor Voronoi diagrams in d-dimensional Euclidean space is O(a,(k,n)) where a,(k,n) :=
knd-1),(n) + (n — k)32, (k) (due to [2]). Thereby, A,(n) denotes the maximum length of a (n,s)-
Davenport-Schinzel sequence, and s is a constant depending on the complexity of the underlying tra-
jectories of the moving sites. In opposite to that, the best known worst-case examples generate “only”
O(k (n — k)[4/21) topological events. Thus, this leaves a gap of a factor of approximately 6((n — k)l4/2]).

Now, the main task of this paper is to bring down the upper known worst-case bound to O(a}(k,n))
topological events where o,(k,n) := min{k%+! (n — k)[%/?1, a,(k,n)}. Doing this, the new upper bound
now approaches the lower worst-case bound up to a factor of O(min{k%,(n — k) l4/21}). This improves
the previously known bound in the case of k € O(v/n).
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1Tn our context the term “kinematic” would be more appropriate. Nevertheless, we use the term “dynamic” for traditional
reasons.
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The paper is organized as follows. Section 2 introduces the necessary definitions and summarizes the
results which are known until now. Afterwards, Section 3 presents the idea which consists in a refined
counting argument and the proof of the new upper bound. Finally, Section 4 outlines further research on
that topic.

2 Preliminaries

This section briefly summarizes elementary definitions and properties of planar and higher-dimensional
Euclidean Voronoi diagrams. At the beginning, we are given a finite set S := {P,,..., Pilofn>d+2
points in d-dimensional Euclidean space IE¢, d > 2. (During our investigations, the dimension d is
considered to be constant.) The perpendicular bisector of P; and P; is defined to be the hyperplane
B = {z € R? |d(z, P;}) = d(z,P;)}, ie. the set of points with equal distance to P; and P;. The
(convex) Voromoi polyhedron of P; is given by v(P;) := {z € R*|V;% d(z,P,) < d(z, P}, ie.
the subset of IE? which is “dominated” by P;. As usual, the vertices of the Voronoi polyhedrons are
called Voronoi points and the bisector portions on the boundary are called Voronoi I-faces according
to their affine dimension I, for 0 < I < d. (We refer to the classification of Voronoi I-faces given
in [3].) Finally the Voronoi diagram of S can be defined to be the collection of Voronoi polyhedra, i.e.
VD(S) = {v(P)|P: € S}. We call the embedding of the Voronoi diagram into the d-dimensional
Euclidean space the geometrical structure of the underlying Voronoi diagram. The dual graph of the
Voronoi diagram is the so-called the Delaunay grapk DT(S). If S is in general position - i.e. no d + 2
points of S lie on a common hypersphere and no d + 1 points of S lie on a common hyperplane — every
Voronoi (d — i)-face in V.D(S) corresponds to an i-face in DT(S), for i = 0, ..., d.

Next, we introduce a one-point-compactification to simplify the description. We augment set S by
adding the “point at infinity”, yielding a new set of sites S’ := S U {cc0}. The extended Delaunay
graph is then given by DT(S') = DT(S) U {(P;,)|P; € S N 8CH(S)}. So, in addition to the
Delaunay graph DT'(S), every. point on the boundary of the convex hull 8CH(S) is connected to co.
We call the underlying graph of the extended Delaunay graph DT(S’) the topological structure of the
Voronoi diagram. In contrast with DT(S), DT(S’) has the nice property that there are exactly d + 1
(d + 1)-tuples adjacent to each (d + 1)-tuple in DT(S").

Next, we adopt two functions® from [2, 5] providing a nice classification of the (d + 1)-tuples of the
extended Delaunay graph DT(S’). In particular, let v(Py,..., P;) denote the center of the hyperball
C(Po,...,Ps) of d+ 1sites Py,...,P; € S, we have:

{Po,...,Ps} € DT(S') <= v(P,...,Pa)is a Voronoi point in V.D(S).
< C(Po,...,Ps) contains no point of S in its interior.
= Vples\{po,mp‘} OUTSIDE(P,, ..., P4, P") =
sign [VOL(Py, ..., Ps) * INS(P, ..., P, P')] = 1
Naturally, an analogous statement can be given for the extended (d + 1)-tuples. I {P,..., Ps} and
{Po, ..., Pa—1,00} are adjacent (d + 1)-tuples in DT(S') with VOL(Py, ..., P;) > 0, we have:
A{Po,...,Pa-1,00} € DT(S') <= P,...,Ps are the vertices of a (d — 1)-face on
the boundary of the convex hull 8CH(S).
—4 Vples\{po,,,,p‘;,} OUTSIDE(Po, ooy Pgoq,00, P') =
sign [VOL(P,,...,P4-1,P)] = 1
2These functions VOL and INS (mnemonic for "volume” and "insphere”) are defined as follows:
1 Poy oo Pog Pgl +'"+Pozd

1 Poy ... Pog

VOL(Po,...,Py) := R INS(Po,...,Pd.H) =

.
.
.

1 Py ... Py

Py .. Pgq P31+--°+P§d
1 Pd+11 cee Pd+ld P3+11 +.”+Pd+ld

VOL(PFo,...,P3) =0 and INS(Py,...,P441) = 0 if the points lie on some common hyperplane or hypersphere, respectively.
These properties allow the computation of the topological events in the dynamic case. i
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Now, we turn over to the dynamic case. For that, we are given a finite set of n > d + 2 continuous
trajectory curves in d-dimensional Euclidean space IE%, S := S(t) := {Py(t),..., Pa(t)} under the as-
sumption that the points move without collisions and that there exists an instant ¢, when the set S(¢o)
is in general position.

Using the classifications above, we achieve the following compact classification of the elementary
topological events of higher dimensional dynamic Voronoi diagrams (compare [2]).

Lemma 1 Elementary changes of the topological structure DT(S') of the Voronoi diagram V. D(S) are
characterized by (i, j)-transitions of adjacent (d+1)-tuples in DT(S'), ezcept in degenerate cases. There-
by, the indices obey the conditions i+ j=d+2 and 2<1i,j <d.

In other words, non-degenerate topological events happen when d + 2 neighboring sites of the topo-
logical structure DT'(S’) lie on a common hypersphere (or hyperplane, if oo is involved). At this instant,
i Delaunay (d + 1)-tuples which exist shortly before the topological event are replaced by d — i + 2
(d + 1)-tuples after the event. Notice that in the planar case, we obtain the classical SWAPs, i.e. (2, 2)-
transitions of neighboring Delaunay triangles (see [11]). In three dimensions, the only possible transition
is the (2, 3)-transition which is depicted in Figure 1 (cf. [1]). Algorithms for maintaining the Voronoi
diagram over time can be found in [2, 6]. They use O(logn) time per event which can be shown to be
worst-case optimal [13].

The best known upper bound on the number of topological events of higher dimensional Voronoi
diagrams (due to [2]) is given by the following lemma. It is achieved under the following additional
non-periodicity condition: we make the natural assumption that there exist at most s € O(1) zeros of the
functions INS(. ..) and VOL(. . .) (for each combination of the sites) which are computablein constant time
each. Indeed, this additional non-periodicity condition can be guaranteed, e.g., in the case of polynomial
curves of bounded degree. Notice that this assumption implies that each subset of S’ of size d+2 generates
at most a constant number of topological events and, following that, a trivial s (3}}) € O(n%*?) upper
" bound on the number of topological events. By a Davenport-Schinzel argument, this naive upper bound
can be brought down by (roughly) a linear factor (cf. [2] for more details).

P Py,

/

P; P; P; P;
(Pi,P;,Pu,P) (Pi,P5,Pu.Prm)
(Pj,Ps.P1,P) (PP PP

(Pi\Ps,Pi,Pm)

Figure 1: A reversible (2,3)-transition with the active Delaunay (d + 1)-tuples in R3.

Lemma 2 Given a finite set S(t) of n continuous trajectories in d-dimensional Euclidean space IE?,
the mazimum number of topological events over time is O(n? A,(n)). If only k < n points of S are
moving (while the remaining n — k stay fized), this upper bound becomes O(as(k, n)) where a,(lc n) =
End=1),(n) + (n — k)32, (k).
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In opposite to that, the known lower worst-case bound is given by the following class of examples
(compare [7, 9, 15]). Imagine n — k points fixed such that the corresponding Voronoi diagram has
complexity O((n — k)[4/21) (which is the worst that can happen) and such that the circumspheres of the
Delaunay (d + 1)-tuples can be stuck by a common line.

After that, we make each of the k remaining points after the other pass along this line. Using the
classification of the Delaunay (d + 1)-tuples above, all O((n — k){#/21) Delaunay tuples are destroyed
during this flow. If we leave sufficient time between these flows, the topological sub-structure of the
static points is destroyed only by one point of the moving points each. Therefore every moving point
generates Q((n — k)(4/21) topological events.

3 The New Upper Bound

The main topic of this section is to prove a new upper bound on the number of topological events which
may appear during the entire flow of the points. We'll see that only O(a,(k,n)) topological events can
happen where o/, (k, n) := min{k?*! (n — k)[9/21 a,(k,n)}.

To achieve this, we have to investigate the topological events in more detail. The basic idea behind
this approach is a refined counting method. Instead of simply distinguishing between fixed and moving
(d+1)-tuples (as it was done in [2, 6]) we study the topological events according to the number of moving
points which are involved in the event.

Recall that exactly d+ 2 sites of S’ are involved in each topological event.® Thus, we separately count
the number of topological events which are created by exactly i moving points, for i = 1,...,d + 2. We
let £; denote the number of these special events, respectively. We start with the investigation of those
topological events where exactly one moving point is involved while the remaining points are taken from
the n — k fixed points. Thereby, we restrict ourselves to non-extended topological events — extended ones
(where oo is involved) can be handled analogously.

Case 1 : one moving point and d + 1 fixed points

According to the classification of topological events, the circumcircle of the d+ 1 fixed points involved
can not contain any of the n — k fixed points in its interior. Thus, these d + 1 sites form a Delaunay
d-face in the Delaunay graph of the fixed sites.

Now, there are only k¥ moving points and at most O((n — k)[4/21) such tuples (cf. [3, 9, 15]). Due
to our non-periodicity assumption, each of these combinations can only generate s € O(1) topological

events. Thus, we obtain at most
t1 € O(k(n— k)42

topological events of this type.

Case 2 : i moving points and d — i+ 2 fixed points (2<i<d+1)

Consider the instant when all ¢ moving and d — i + 2 fixed points lie on a common hypersphere (due
to our classification). As the d — i + 2 points are fixed, they belong to a d — i + 1-face of the Delaunay
graph of the n — k fixed sites. Using the estimation on the (dual) Voronoi faces given in [3], the number
of d — i + 1-faces is bounded by O((n — k)™in{i.[4/21}),

Now, there exist only (%) possibilities to select the i moving points which generate at most
O((n — k)min{i:[4/21}) topological events, each. Thus, for any fixed i we obtain at most

t: € O(K (n — kymin{i.f4/21}

events.

31t should be clear that at least one of them has to move in order to generate some topological event.
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Case 3 : d+ 2 moving points and no fixed points

In this case, we apply .the earlier result by Albers et al. [2] providing an upper bound of
tigz € O(K4 ), (K))

topological events of this type.

Finally, summing up these type-i topological events we obtain

d+2 d+1 L
Z t < C ‘:Z E (n _ k)mm{s,fd/ﬂ} + k9 A,(k)}

i=1 =1

A

IA

C [@+D (= B4 + k42, (R)]
0 (k¥ (n - B4/ 4 k9, ())

m

for some positive constant C. Notice, that for k¥ € O(y/n) (the domain we are interested in) the term
O(k? ), (k)) is dominated by the term O(k%+! (n — k)[9/21). The following theorem summarizes the new

upper bound on the number of topological events.

Theorem 1 Given a finite set S(t) of k continuously moving points and n — k fized points in d-dimen-
sional Euclidean space IE®, the mazimum number of topological events over time is O(a(k,n)) where

o, (k, n) := min{k*** (n — B)¥2, a, (k, n)}.

Thus, if k is considered to be some constant, our counting technique provides an upper bound of
O(nl4/21) topological events instead of O(n?) with the former approach. This new upper bound matches
the lower worst-case bound outlined above in this case. Figure 2 illustrates the known upper and lower

worst-case bounds.

# events
n3d/2+1 .- - . new counting method
nétl 4 N TN earlier upper bound

nd/241 ]

ndlz -é. -_—

— o= == = — worst-case examples

-
o

Figure 2: The upper and lower worst-case bounds for dynamic Voronoi diagrams.
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4 Conclusions & Acknowledgement

We have presented a new upper bound on the number of topological events which approaches the lower
worst-case bound known so far up to a factor of O(min{k?, (n — k)L9/21}). Future research should further
tighten this gap. Nevertheless, this is the first approach with matching upper and lower worst-case bounds
for a constant number of moving sites.

Another open problem is the classification of topological events which appear in higher-order higher-
dimensional Voronoi diagrams of moving points. Using the technique presented in [2] the analysis of these
kinds of events is imaginable. Finally, nearly nothing is known on Voronoi diagrams of moving points
under other metrics than the Euclidean one, e.g., L,-metrics.

Finally, the author would like to thank Peter Widmayer for carefully reading this manuscript.
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