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Algorithms for Relative Neighbourhood Graphs
and Voronoi Diagrams in Simple Polygons

(Extended Abstract)
V. Sarin & S. Kapoor!

1 Introduction

In this paper we present algorithms for two related problems. The first problem is that of finding the
Voronoi diagram of the vertices of a simple polygon whereas the second problem is that of finding the relative
neighbourhood graph of a simple polygon. These problems differ from the commonly known problems of
finding these diagrams for a set of points in the plane in that there is an additional requirement of visibility
in the definition. Finding the relative neighbourhood graph of simple polygons has been discussed by
Toussaint [7). This problem has applications in image processing and is also of theoretical interest because
of its relationship to the Voronoi Diagram.

Previous work on these diagrams includes O(nlogn) schemes for finding the constrained Delaunay tri-
angulation amongst a set of line segments [1, 8]. In this paper a new algorithm has been presented for
constructing the Voronoi diagram of a simple polygon. An extension of this algorithm to the situation when
polygonal obstacles are present is also outlined. The algorithm assumes an arbitrary initial triangulation
of the simple polygon (efficient methods for triangulation of simple polygons exist). The Voronoi diagrams
are constructed using this triangulation. A divide and conquer approach is used in a fashion similar to the
Voronoi diagram construction in [5]. The algorithm proposed in this paper provides a simple solution to a
more general problem - that of finding the Voronoi diagram for a set of line segments. It may be noted that
the dual of such a Voronoi diagram is the constrained Delaunay triangulation discussed in [1, 8].

The motivation for the Voronoi Diagram algorithm is in the construction of the Relative Neighbourhood
graph for simple polygons. For the Relative Neighbourhood graph the previous best scheme is of O(n?) time
complexity [2] (To the authors’ knowledge). We present an efficient algorithm with O(nlogn) time complexity
for the relative neighbourhood graph problem (also referred to as the RND problem). The algorithm starts
with a Delaunay Triangulation of the simple polygon (the dual of the Voronoi Diagram), and eliminates
edges to obtain the RND. It uses a number of passes over the simple polygon and eliminates triangulation
edges using the vertices of the polygon. This approach is also amenable to an extension of the problem, i.e.
construction of the RND for simple polygons with obstacles.

The paper is organized as follows: Section 2 contains definitions, Section 3 deals with the Voronoi diagram
and Section 4 with the RND. Section 5 makes concluding remarks.

2 Definitions

1. Voronoi Diagram of a simple polygon(SVD) : The Voronoi diagram of a simple polygon is the Voronoi
diagram of the vertices of the polygon with the restriction that all points in the region associated with
point p; are visible to p;. We let Vor(P) denote the Voronoi diagram of polygon P and Vor(p;) denote
the Voronoi region associated with the point p;.

2. Constrained Delaunay Triangulation (CDT) : The straight line triangulation of the Voronoi diagram
of a simple polygon.

3. Lune : lune(a, b) is the set of points £ such that-d(a, z) < d(a,b) and d(a, £) < d(a, ) where d(p,q) is’
the euclidean distance between points p and q. -

" 4. Relative Neighbourhood Graph (RNG) : RNG of a set of points in a plane is a set of edges p;p; such
that no point p; lies inside lune(p;, p;).

5. Simple Polygon Relative Neighbour Decomposition (SRND) : SRND of a simple polygon with vertices

DO-eeee -1 and edges p;p(i4+1)modn i8 defined as a set of edges p;p; s.t. : (i) p; & p; are visible to each

other, and (ii) No vertex p; which is visible to either p; or p; lies inside lune(p;, p;).
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6. Simple Polygon with polygonal obstacles : A simple polygon P which contains several other non over-
lapping simple polygons, say Py, P;.....P: , within itself is calle% a simple polygon with polygonal
obstacles. In this case the interior of the simple polygon is P — |J;_, P.

3 Voronoi Diagrams of a simple polygon

The problem of finding the Voronoi diagram of simple polygon P is an extension of the problem of finding
the Voronoi diagram for a set of points in the plane. We now present an outline of an algorithm based on
the divide and conquer approach to compute the Voronoi diagram of a simple polygon. This is followed by
a detailed description of each step in the algorithm.
Procedure Voronoi_diagram_1

1. Partion P into two subpolygons of approximately equal sizes.

2. Construct Vor(P;) and Vor(P;) recursively.

3. Merge Vor(P;) and Vor(P,).

Step 1. Consider any arbitrary triangulation of P and call it P;. Next consider the dual graph of P;, say G.
Note that G is a tree and the maximum degree of any vertex of G is three. G can be used to divide P into
two parts containing approximately equal number of triangles. Suppose edge e divides G into two parts G,
and G3 . The triangulation edge ¢ corresponding to e is used to partition P into P; and P, (corresponding
to G; and G resp.). After partition, ¢ is included in both P, and P;.

Step 2. This step is to recursively compute Vor(P,) and Vor(Pz). To compute Vor(P;), we augment the
subpolygon P, with two new vertices z; and z, as shown in Fig 1. This ensures that the part of Vor(P;)
extending across the edge t is also computed at this step. This would later be merged with Vor(P;) to get
Vor(P).

Figure 1: Voronoi diagrams of P, and P,

Similar construction is done for P;, and Voronoi diagrams for these augmented polygons are computed
recursively. It may be noted that henceforth, the terms - subpolygon P, and augmented subpolygon P,
would be used interchangeably.

Step 3. The last and final step is the merger of Vor(P,) and Vor(P;) into a single Vor(P). To perform
this merger we will first define a geometrical construct.

Definition 1. Given a partition {P,,P,} of P, let & (P,,P; ) denote the set of Voronoi edges that are shared
by pairs of polygons V(p;) and V(g;) of Vor(P), for p; € P, and g; € P;.

The following property is true when we are dealing with a set of points in the plane:

Property 1. ([5], pp. 207) If P, and P, are linearly separated then o (P,,P;) consists of a single monotone
chain w.r.t the line separating P, and P, .

_ This property needs to be modified if it is to be useful in the case of a partition of simple polygons. The
following modification incorporates visibility into the property.
Definition 2. A line t linearly v-separates a polygon P into parts P, and P; if every path from a point in
P, to a point in P; crosses t.

If such a line exists then P, and P, are linearly v-separable.

Lemma 3.1 If P, and P; are lincarly v-separable by t then o (P,,P;) consists of a single monotone chain
w.rilt
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Proof. Similar to that in [5).

As P, and P; are linearly v-separable by the edge t, o is a single monotone chain w.r.t. t. If we assume
that o (P;, P;) cuts P into a left portion 7, and a right portion 7 then it can be proved that

Lemma 3.2 If Py is the left half and Py is the right half of P and o (P,, P;) cuts the plane into a left
portion w and a right portion xr then Vor(P) = (Vor(P ) NxL) U (Vor(P2) N 7R).

Proof. Follows along lines similar to [5).

Note that ¢ (Py, P) is contained entirely within P.

So, Step 3 consists of constructing the polygonal chain o, separating P, and P, and discarding all edges
of Vor(P;) to the left of & and all edges of Vor(P,) to the right of &. The result obtained is Vor(P).

The most crucial step in the above algorithm is the construction of the dividing chain. We now present
the algorithm to compute o efficiently. The spirit is similar to the chain finding method for Voronoi diagrams
of a set of points in the plane. The reader is referred to Fig. 2.

Figure 2: (a) Construction of o (b) Voronoi diagram of Simple Polygon P

Procedure compute_chain
1. Suppose that P has been divided across the edge t. Let zo be the point of intersection of P and V;(a).
Further, let zo be on the boundary of Voronoi region of p; in P;. Let ¢; = a.
2. Let [; ; be the perpendicular bisector of p;g;.
3. Let z, be the first point of intersection of I;; and some edge e; in Vor(P;) U Vor(P;) in a direction
monotone w.r.t. ¢.
o If e, € P then [;; =e,. Go to 3.

o If e, € V1(b) U Vo(b) then exit.
o If e, € Vor(P,) and e; is the bisector of line joining p; and p;, then p; = pi. Go to 2.
e If e, € Vor(P,) and ¢; is the bisector of line joining g; and g, then g; = gi. Go to 2.

The key step in forming the dividing chain is to determine the edge intersected first by the walk at each
stage. For this we have a property of the walk similar to that in [5].

Lemma 3.3 If Vi(p;) € Vor(P,) then as long as o is within Vi(p;) (it can change direction many times
within Vi(p;) if it intersects a number of edges of Vor(Ps) ) it always keeps turning in a monotone direction
(either clockwise or anti-clockwise).

Proof. Similar to that in [§].
Since P, and P; are planar graphs, ¢ can becomputed in O(n) time.

Lemma 3.4 The time complezily of Voronoi_diagram_2 is O(nlogn).

Proof. Step 1 of Voronoi.diagram.2 can be performed in O(n) by using DFS. Time for constructing the
polygonal chain is O(n). Therefore Step 2 can be performed recursively in time T(en) + T'((1 — c)n) where
1/2 < ¢ < 2/3. Step 4 can be performed simultaneously while computing o. Therefore, T(n) = O(nlogn).

Theorem 3.1 SVD(P), the Voronoi diagram of a simple polygon can be computed in O(nlogn) time.

Proof. Correctness of the algorithm follows from Lemmas 3.1 and 3.2 and the fact that the chain construction
is done correctly by procedure compute_chain. The time complexity has been proved using in Lemma 3.4.



3.1 Voronoi diagram of a simple polygon with polygonal obstacles

Procedure Voronoi_diagram.2 (modified for simple polygon with obstacles)

1. Partition P into approximately equal subpolygons P, and P;. This may be done by a straight line
which divides the vertices of P into two halves. The partial polygon on the left of this line would be P,
and the one on the right would be P,. As P, and P, may have more than one common edge, we take
all such edges t}s which arise out of the partition instead of just one edge as in Voronoi.diagram.1.

2. Construct Vor(Py) and Vor(P;) recursively.

3. Construct the polygonal chain o, separating P, and P; . In this step we need to merge Vor(P;) and
Vor(P;) along all the edges t/s one by one. Lemma 3.5 presented later allows easy construction of o.

4. Discard all edges of Vor(P;) to the left of o and all edges of Vor(P;) to the right of o .

Lemma 3.5 The polygonal dividing chain o consists of edge-disjoint chains.

Proof. Let [ be the straight line dividing P into P, and P,. Suppose that ¢ consists of chains o}s, where
each o; corresponds to an edge ¢;. Since each o0; is monotonic w.r.t. /, it does not have a common edge with
oj (i # J).

We can use this lemma to actually construct the merger in linear time. We note that now the dividing
line may not be a single monotone chain but a number of non-interacting chains which are monotone w.r.t.
the same line I. The construction of each such chain - o; can proceed independent of any other chain, and
follows exactly the same method as described earlier (in procedure Voronoi.diagram_1). Since o consists of
O(n) distinct edges, the time complexity of the construction of & is O(n).

The time complexity of the above procedure is given by the following lemma.

Lemma 3.6 The time complezity of procedure Voronoi_diagram_2 is O(nlogn).

Proof. As discussed above, Step 3 takes O(n) time, and according to Step 1, Step 3 is performed O(logn)
number of times. Therefore, procedure Voronoi_diagram_2 has a time complexity of O(nlogn).

Theorem 3.2 Voronoi diagram of a simple polygon with polygonal obstacles can be computed in O(nlogn)
time.

Proof. Correctness follows from Lemma 3.5 and the correctness of the proceDure for computing the dividing
chain ¢. The time complexity follows from Lemma 3.6.

In conclusion we note that the problem of finding the Voronoi diagram of a set of line segments can be
viewed as a special case of the problem of finding the Voronoi diagram of a simple polygon with polygonal
obstacles. In this case we can consider the polygon to be an infinite rectangle encompassing all the line
segments. Each of the line segments can be treated as a polygonal obstacle. The Voronoi diagram obtained
can be suitably modified to remove the effects of the four vertices of the infinite rectangle. This results in
the Voronoi diagram of the set of line segments (which were viewed as obstacles). A dual of this Voronoi
diagram is the constrained Delaunay triangulation (also discussed in [1, 8]).

4 Relative Neighbour Decomposition of a simple polygon

The problem of finding the relative neighbour decomposition of a simple polygon has been defined in Sec. 2.
An O(n?) algorithm for finding the RND of a simple polygon is presented in [2]. This algorithm is based

on finding the visibility graph (VG) of the simple polygon. Since this may require finding O(n?) edges, the

algorithm offers no scope for further improvement.

" Instead of the VG, we use the fact that RNG is a subset of the Delaunay Triangulation (DT) to construct
the RND of the simple polygon. This technique was used by Supowit [6] to construct the RND of a planar
point set. The CDT is the dual of the Voronoi diagrams constructed in Sec. 3. This can be proved by
techniques similar to that used in [8].
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4.1 Algorithm for RND of a simple polygon.

A new algorithm for finding the RND of a simple polygon is presented here.
Algorithm-RND

1. Find CDT of the simple polygon P.

2. Remove the edges from DT which do not belong to RND.

The algorithm assumes that for a simple polygon, RND is a subset of CDT (Theorem 2 presented in [2]
can be applied in a similar way to prove this assumption). An O(nlogn) algorithm for finding the CDT of a
simple polygon is presented in Sec. 3. Therefore , we will only describe step 2 of the algorithm-RND. This
step will run in O(nlogn) time yielding a total time complexity of O(nlogn). We first establish the following
lemma.

Lemma 4.1 If a vertez v eliminates an edge ab from being in RND, i.e. if v € lune(a,b) then Lavb = 60°.
Proof. From the definition of lune(a, b).

In order to delete those edges from CDT which are not there in the RND, we can look at each point
v € P and delete each edge e € CDT whose lune contains v. This is simplified by Lemma 4.1. According to
this, we need to send just six rays from v and check if v € lune(e) for all the edges e which are intersected
by any of these six rays.

We perform the above exercise in the following way. We will scan the polygon along six directions
separated by 60° one after the other. Here we discuss one such scan (all the others are similar). Without
loss of generality we can assume that the ray moves from positive infinity towards zero along the x-axis. So
we will consider such a ray for each point and determine the edges of CDT eliminated by the point.

The algorithm consists of the following steps.

Step 2.1. We use G (dual of P) to sort the edges in a topological order along the scan direction. We obtain
a directed tree after this step with some source nodes (indegree = 0) and some destination nodes (outdegree
= 0). Another property of this tree is that if we consider edge e, then its dual edge - t € CDT can be
eliminated only by points which occur in the triangles which are the ancestors of e. In other words, if there
is no path from a node v in the tree to an edge e, then the projection of points of v ( v is a triangle in P )
on the y-axis falls outside the projection of ¢ (dual of e) on the y-axis.

Step 2.2. As mentioned earlier, the property of the tree is that points which may eliminate an edge t are
found only along the paths leading from the sources to the edge ¢ (dual of t). So we will devise a scheme to
determine if the edge t is to be eliminated or not.

Assume, for simplicity, that the tree above is just one path from a single source vertex s to e. Start
from the source triangle and form a list of vertices (initially, this list contains only one vertex of the source
triangle ). These vertices will be useful in eliminating edges from CDT. As we keep moving along the path
from s to e, we cross CDT edges one by one. At each edge ab we do the following :

Assume that the list has a top and a bottom end ( the vertices in the list are ordered along the list from
top to bottom as they occur clockwise in P). Let a occur on the top and b at the bottom side of the edge
ab. Now for inserting a into the top end of the list we keep popping vertices till we get a vertex v whose
projection on the y-axis is less than that of a. In other words, a will eclipse the vertices popped. Now push
a onto the list. Insert b at the bottom end of the list in a similar way. Clearly, the vertices popped will never
be able to eliminate edge e because their rays have been obstructed by the polygon P.

When we reach ¢, we have a list of vertices whose rays should intersect ¢ (after we have popped off vertices
and before pushing the end points of t onto the list).

Now we determine if a vertex v in the list eliminates ¢, i:e if v € lune(t). This can be done sequentially
from any one of the ends of the list. If v & lune(t), then pop v (It is easy to show that v will not be able to
eliminate any edge after e along this path) If on the other hand v € lune(t), then eliminate t. Also in this
case do not pop v but maintain the current list.

Lemma 4.2 The above procedure correctly eliminates an edge which belongs to CDT - RND.

Proof. When we reach an edge e, we have a list of vertices which is a superset of the vertices which may
eliminate e (along that scan direction). Therefore, if ¢ is to be eliminated, it is eliminated by some vertex in
the list. If there is a vertex in the list, say v € lune(e), then it is not necessary to check if v is visible from
e because v € lune(t), the ray from v strikes ¢ and all vertices eliminated before v (say from the top of the
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Figure 3: Elimination of an edge

list) do not lie in the lune. If there had been an obstruction of visibility between the end points of the edge
e and the point v, then there would have been a vertex in the lune considered before v (Ref. Fig 3).

To establish the efficiency of the scheme we note that the vertices in the list are pushed and popped once
each only, and the top and bottom elements of the list are used to eliminate CDT edges.

Actually, the tree is made up of a number of sources and destinations and paths among them. Therefore,
instead of a single sweep line (list of nodes) travelling from the source to the destination, we now have one
sweepline starting from each source vertex and moving down a path. Complications arise in two cases :

e When a path gets split into two (remember that G is a tree with maxdegree equal to 3, so a path can

split into at most two paths).

e Two paths merge into a single path (reverse of splitting).

In the case of merger of two paths, the two lists associated with each of the merging paths are concatenated
into a single list to be moved down along the single merged path. In case of splitting, the approach is different.
One single list has to be split at a certain point and each of the two resulting lists is taken along different
paths. The point of splitting of the list is determmed by the point of P at which the path splits (See Fig. 4).

of splining

W

/™5
Point of merging
Figure 4: (a) Merging of two lists and (b) Splitting of a list

Now the demands on the list can be summarized as : (i) insertions and deletions from both ends only,
(ii) concatenating two lists and (iii) splitting a list into two at a specific point.
The following lemma can be used to perform these operations efficiently.

Lemma 4.3 Concatenation of two lists and splitling of a list at a specific point can be done in O(logn)
steps. Insertions and deletions at the ends of the list can be done in O(1) steps.

Proof. Note that the elements in the list are ordered according to the values of their projections on the y-axis.
Using the data structure of concatenable queue we can ensure, in O(logn) time the following operations on a
dynamic ordered sequence - Concatenation of two lists and Splitting of a list at a specified point. Maintaining
pointers to the minimum and maximum values in the queue allows insertions and deletions at the ends of
the lists in O(1) steps.

The time complexity of the preceding algorithm is given by the following lemma.
Lemma 4.4 The time complezity of the algorithm for computing RND is O(nlogn).
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Proof. As each point is inserted and deleted exactly once, O(n) work is done on all insertions and deletions.
Splitting and merging can be charged to the points causing them. From Lemma 4.3 it follows that the net
time complexity of the algorithm is O(nlogn).

Theorem 4.1 The RND of a simple polygon can be obiained in O(nlogn) operations.

Proof. If an edge is to be eliminated, it gets eliminated by a vertex in some list (in one of the scans
along the six directions). Moreover, no edge gets eliminated incorrectly (lemma 4.2). Hence the algorithm
correctly computes the RND of a simple polygon. Lemma 4.4 establishes that RND of a simple polygon can
be computed in O(nlogn) operations.

4.2 RND of a simple polygon with polygonal obstacles

The preceding scheme is also applicable to finding the RND of a simple polygon with obstacles. In this case
the scan direction gives us a DAG instead of a tree. The major difference now is that the after a path has
split it may merge again forming a cycle. However note that the DAG still has nodes of degree atmost 3 and
therefore the merging process may be carried out as before. The time complexity of the scheme in this case
is also O(nlogn).

5 Conclusions

The algorithm for computing the Voronoi diagram of a simple polygon leads to an O(nlogn) scheme for this
problem. This time complexity may not be optimal but the technique used was conceptually simple and
intuitively appealing. The existing algorithms are for the more general case of n points in a plane with n
line segments, which introduced extra complexity. The algorithm presented uses the information about a
(triangulated) simple polygon to simplify the task of finding the Voronoi diagram. Its extension to the case
of a simple polygon with obstacles retains the simplicity of this method.

The algorithm for computing Relative neighbour decomposition presented in Section 4 has the time
complexity of O(nlogn) which is an improvement over the previous best algorithm of O(n?) time complexity.

An interesting problem would be the extension of these algorithms to dynamic simple polygons where
we may consider vertices being added to the polygon dynamically. This, however is an open problem.
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