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Abstract

A set P = P,,P,,....P, of polygons is called a k-
cover of a simple polygon P if P = UL | P,. It has
been shown that, in most cases, finding k-covers of
polygons by subpolygons of a given class is NP-hard.
Shermer [She91a] gave a linear time algorithm to de-
termine if P has a two-cover by convex polygons;
Belleville [Bel91] gave an O(n?) time algorithm that
finds two-covers by Li-convex polygons. In this pa-
per. we give an algorithm to find a two-cover of P by
star-shaped polygons in O(n*) time and O(n?logn)
space respectively, if one exists.

1 Introduction

This section introduces the notation and the defini-
tions that will be used throughout this paper. If p
is a point of the plane, we denote by N.(p) the open
circle of radius € centered at p. The interior of a line
segment /, denoted by int(l), is the open line segment
having the same endpoints as I. Given a simple poly-
gon P, we denote the boundary of P by bd(P), its
interior by int(P), and its exterior by ezt(P).

A point p of P is visible from a point p’ of P if the
line segment joining p to p’ does not intersect ezt(P).
We say that a subset Q of P is completely visible from
another subset Q' of P if every point of Q is visible
from every point of Q’, and denote by V(P,Q) the

subset of P from which @ is completely visible. A

subset @ of P is said to be weakly visible from a subset
Q' of P if, for each point g of Q, there exists a point
of Q' (depending on g) that is visible from g.

The upper envelope of a set F = {fy,f2,...,fn} of
functions over an interval I is the function f, with do-
main I, defined for t € I by f(t) = maz{f;(t)|f; € F}.
The lower envelope of F is defined similarly. En-
velopes are discussed further in Sections 2.2 and 3.2.

This paper is mainly concerned with computing k-
covers of simple polygons. A set P = {P,,P;,...,P:}
is said to be a k-cover for a simple polygon P if P =
.Uf;l P;. Results on k-covers of simple polygons can be
~ found in [O’R87, She91b].

1This work was carried out while the author was with
the School of Computer Science, McGill University, Montréal,
Québec, Canada [Bel91].

The Two-Cover problem for a given class of poly-
gons consists in determining whether a polygon P
can be covered by two polygons of this class. Sher-
mer [She9la] gave an O(n) algorithm that solves
the two-cover problem for convex polygons, and
Belleville [Bel91] gave an O(n?) algorithm for the two-
cover problem for Li-convex polygons. We shall con-
sider the two-cover problem for star-shaped polygons,
and give an O(n*) time and O(n?logn) space algo-
rithm to solve it (see also [Bel91)).

2 Geometric Considerations

2.1 Characterizing Kernel Points

Consider a polygon P that can be covered by two star-
shaped polygons P, and P,. In this section, we want
to show that there exist star-shaped supersets P’;,
P'; of Py, P, respectively, such that each of Kr(P';),
Kr(P'2) has at least one point whose location can be
characterized. We first summarize the conditions un-
der which a point of p is completely visible from N, (v)
for a vertex v of P and some ¢ > 0.

Lemma 2.1.1 Let P be a simple polygon, v be a ver-
tez of P, and p be a point of V(P,v). There ezists an
€ > 0 such that p is completely visible from PN N.(v)
if and only if
(a) p lies in the interior halfplanes determined by
the edges of P containing v;

(b) No point of bd(V(P,v)) lies on the line seg-
ment (p,v) unless an edge of P containing v does.

We now want to obtain a characterization of the ker-
nels of two star-shaped polygons that cover a simple
polygon. First, we need to give a maximality crite-
rion on which to base our choice of what constitutes
a ‘nice’ cover of P by two star-shaped polygons.

Definition 2.1.1 Let P be a simple polygon. We say
that a star-shaped subset Q of P is mazimal with re-
spect to P if Q = V(P.Kr(Q)).

From this definition of maximality, it follows imme-
diately that, if P can be covered by two star-shaped
polygons P, and P,, then there are star-shaped poly-
gons P'; and P’; that cover P and are maximal with
respect to it. Contrarily to what happens when P is
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star-shaped, however. not every edge in Kr(P’;) and
Kr(P'3) needs to be collinear with an edge of P. In
spite of this, we can still locate at least one point in
each of Kr(P,), Kr(P;) with respect to edges of P, as
shown below.

A chord c of a simple polygon P shall be called the
extension of a line segment ! with respect to P if ¢
contains ! and no chord ¢’ of P strictly contains ¢. In
the remainder of this paper, we will simply refer to
an eztension of P to mean the extension of an edge
of P. If p is a point of P, an edge e of P will be
called u-eztreme for p if the extension of e contains p,
and if the point p+u belongs to the exterior halfplane
determined by e. A line segment ! contained in P will
be called an internal tangent to P at a vertex v; of
P if v; belongs to the interior of I. We shall then say
that the side of I to which the edges adjacent to v;
belong is an ezterior halfplane determined by I.

Consider a simple polygon P, and a cover of P by an
arbitrary number of star-shaped pieces P,,P;,...,Pn,
each of which is maximal with respect to P. We can
establish a relationship between the boundary of P
and points of the boundary of Kr(F;).

Lemma 2.1.2 Let P be a simple polygon covered by
star-shaped polygons P,,P,,...,P, that are mazimal
with respect to P, u be a unit vector, and p be an
extreme point of Kr(P;) in direction u. FEither there
is an edge e of P that is u-extreme for p, or there ez-
ists a reflez vertez v and a chord c that is an internal
tangent to P at v, and is u-extreme for p.

From Lemma 2.1.2 and from the previous observa-
tions, we get the following theorem that determines
the possible locations of the kernel points of two star-
shaped polygons covering P.

Theorem 2.1.1 Let P be a simple polygon that can
be covered by two star-shaped polygons. There ezist
two star-shaped polygons Py, P, that cover P, and
points py € Kr(P,), p» € Kr(P;) that lie on ezten-
sions Iy, lo of P.

A better characterization of kernel points would be
desirable, as it would probably improve the algorithm
which we will present. The following theorem, whose
proof shall be omitted, shows that if such a character-
ization exists, it is unlikely to be a simple one :

Theorem 2.1.2 There ezists a simple polygon P

.-such that, for every two-cover P = {P,,P,} of P by

star-shaped polygons, no point of Kr(P,)UKr(P,) lies
on the intersection of two lines determined by four not
necessarily distinct vertices of P.

¢ Q
~ {
v, Sl
'
v, v,
v, v, v, \
v, v, v, v, v, v

Figure 1: Polygon used in the proof of theorem 2.1.2
2.2 Linear-Rational Functions

This subsection examines the relation between visibil-
ity inside simple polygons and a class of functions that
we shall call knear-rational.

Definition 2.2.1 A function f(t) is linear-rational if
there ezist real numbers a;,az,a3,a4 such that f(t) =
(a1t + a2)/(ast + a4)-

Consider a non-vertical directed line [ in the plane,
along with a reference point pp on I. Points of ! will
be parametrized by their signed distance from po. It
is a well-known fact that, for each point p of a simple
polygon P, and for every line segment I contained in
P, the subset of ! visible from p is connected. If I is
weakly visible from p, but its left endpoint does not see
p, then the line segment joining p to the leftmost point
of I that is sees (denoted by left[l,p]) goes through a
reflex vertex of P. We shall say that this vertex of P
is left-limiting for p on l.

Suppose now that p moves along a line segment I’
contained in P. The following lemma shows how to
compute left[l,p] for a given p provided that we know
the vertex of P that is left-limiting for p on l.

Lemma 2.2.1 Let I, I’ be non-vertical lines in the
plane, v be a point that does not belong to IU!', and f
be a linear-rational function of a parameter t. Ift' is
the position on l' of the point collinear with v and the
point in position f(t) onl, then t' is a linear-rational
function of t.

Thus, if I, I’ are two line segments contained in P,
for each vertex w; of P\ V(P,p) that is not a vertex
of P, the position of w; inside the edge of P to which
it belongs is described by a piecewise linear-rational

- function of the position of p on I. Furthermore, the

same lemma implies that the leftmost and rightmost
points of I’ visible from w; are also described by this
type of functions.

The positions of the points of I’ that lie to the
right of each one of left[l’,w;] for a given position



t of p on ! are described by the portion of the line
z = t that lies above the upper envelope of the set
F = {f1,f2,...,fm} of functions describing left[l’, w;].
Therefore, the set of points (¢, t') above this upper en-
velope (where ¢ is in the range over which each f; de-
scribes left[l’, w;]) determines all pairs (p, p’) of points
for which p’ lies to the right of left[l’, w;] for each i.
A symmetric fact holds for the lower envelope; these
facts will be used in Section 3.3.

2.3 Visibility Changes Along a Line
Segment

Consider a point p that belongs to a line segment [
contained in a simple polygon P. As p moves along
I, the set of vertices of P\ V(P,p) remains the same
at almost all points of I. In the neighborhood of these
points, the intersection points of edges of P with edges
of V(P,p) that are chords of P move slightly in the
interior of these edges of P. Since their movements are
described by linear-rational functions of the position
of p on [, the descriptions of these intersection points
do not change and are easy to maintain. The changes
in the set of vertices of P\V(P, p) thus occur at certain
special points of I, which we shall call critical. These
points are the following.

Definition 2.3.1 Let P be a simple polygon, | be a
line segment contained in P and p be a point of l.
We say that p is a critical point of I if there is a ray
R with endpoint p and a sequence W = w,,wa,...,wi
of two or more vertices of P such that the following
conditions hold :

e RNil=p;
o Fori=1,...,k, w; € RNV(P,p);
o Fori=1,..,k—1, w; belongs to (p wit1).

Each such w; will be said to generate p. All changes
in the equation describing the position of left[ex, p] (for
some edge e, of P) also occur at critical points of 1.
The next lemma shows that there are not too many
critical points on each line segment.

Lemma 2.3.1 Let P be a simple polygon and | be a
line segment contained in P. There are at most O(n)
pairs (p,w), where p is a critical point of I, and w is
a verter of P generating p.

Let us consider the way to cover P\ V(P,p) as p
" ‘moves along I. We need to determine whether a point
of P sees all points of P\ V(P,p). This can be done
by noting that, if Q = {Q1,Q2,...,Qx} is a collection
of simple subpolygons of P, then a point p € P sees

all points of UX_, Q; if and only if it sees all vertices of
each Q;.

We shall now restrict ourselves to points on exten-
sions of P. We shall say that a line segment contained
in a simple polygon P is conforming if both of its end-
points are vertices of P. Consider a conforming line
segment I’ contained in P. If a point p moves along a
line segment !, all changes in the visibility of I’ from
p will occur at critical points of [ (i.e. conforming line

segments behave in the same way as edges of P). In-

general, extensions of P will not be conforming line
segments. We can however add at most 2n — 6 new
vertices to P at the endpoints of these extensions; all
extensions will then become conforming line segments.
Using conforming line segments will simplify the algo-
rithm by insuring that all important events occur at
critical points of the augmented polygon.

3 Covering by Two Star-Sha-
ped Polygons

In this section, we give an O(n*) time and O(n?logn)
space algorithm to determine whether a given simple
polygon can be covered by two star-shaped polygons.
and to find two such polygons if they exist.

3.1 Algorithmic Preliminaries

We start by listing several computations which are
used as preprocessing steps by the covering algorithm.
Extensions of edges of P play an important role in our
algorithm; we need a way to compute a list of all dis-
tinct extensions of edges of P. This can be done by
2n applications of the bullet shooting algorithm de-
scribed in [GHL*87), using O(nlogn) time and O(n)
space. Note that, contrarily to [GHL*87], we assume
that bullet shooting returns the last point of bd(P)
that the ray meets before intersecting ezt(P), instead
of the first point of bd(P) that it meets. This simple
modification affects neither the construction time nor
the query time.

Another tool that we need is a way to determine,
given a point p of P and an extension c; of P, the sub-
set of c; that is visible from p, along with its limiting
vertices. This can be done by modifying the algorithm
used for problem (iv) in [GHL*87], which preprocesses
P so that the subset of an edge e of P visible from a
query point p can be found in O(logn) time. We di-
vide P in two or more subpolygons by cutting it along
ci, and then preprocess each subpolygon individually.

A similar technique allows us to find the subset ! of a
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line segment c; that contains a given point p and such
that, for all ¢ in I, a given vertex v of P is a vertex of
V(P,p). This follows from the fact that v is a vertex
of V(P,p) if and only if p does not belong to the subset
of P that completely sees an e-neighborhood of v, and
from Lemma 2.1.1.

Finally, one last application of this result allows us
to determine in O(logn) time the subset of an exten-
sion ¢; of P for which a vertex w of P is left-limiting
(right-limiting) with respect to an edge e of P. Thisis
because the range of allowable orientations for I can be
found by intersecting the double wedges determined
by the subsets of c; and e that are visible from w.
The preprocessing needed for the last three operation
uses O(n?) time, with an O(logn) query time.

3.2 Two useful data structures

Consider a set Z = {I1,]5,....In} of intervals, and the
upper envelope over I = N, I; of a set F = {f1(t),
f2(t), ..., fn(t)} of n linear-rational functions such
that f;(t) is continuous over I;(t) for i = 1,...,n.

It follows from a result of Hershberger [Her89] that
the complexity of the upper envelope of F over I is
O(n). The algorithm described in [Her89] to merge
two upper envelopes can be modified to merge the two
upper envelopes corresponding to two sets F; and F»
of linear-rational functions, in O(|F1|+|F2|) time and
space. By storing the functions of F in the leaves of a
complete binary tree, we obtain the following theorem.

Theorem 3.2.1 There ezists a data structure which
maintains the upper envelope of a set of linear-rational
functions and such that each insertion and deletion
takes O(n) time, where n is the number of instances
of functions stored in the data structure.

We now define a geometric object that is used to
find the critical points that belong to extensions of a
simple polygon P.

Definition 3.2.1 The augmented arrangement gen-
erated by a simple polygon P is the subdivision S of
P generated by the ertensions of its edges, where each
vertez of P contains a pointer to the corresponding
vertez of S, and each edge of S holds a pointer to the
corresponding eztension of P.

Since the step consisting in computing the aug-

.- mented arrangement generated by P is not critical for

our algorithm, it can be done using the algorithm of
Bentley and Ottmann, and so the augmented arrange-
ment generated by P can be computed in O(n?log n)
time and O(n?) space.

To find the set P; of critical points for each extension
of a simple polygon P, and enumerate the points gen-
erating each of them, we look at each pair of vertices
of P that may potentially generate critical points, and
traverse the augmented arrangement A generated by
P along the ray that they determine. Critical points
of extensions of edges of P are located at the points
of intersection of this ray with edges and vertices of
A. This procedure enumerates all critical points of
extensions of p, and all points generating them, in
O(n?logn) time using O(n?) space.

3.3 The Covering Algorithm

We now come to the description of the algorithm that
finds a covering of P by two star-shaped polygons. We
first explain the general idea behind the algorithm.
We then detail each step of the algorithm, and con-
clude by sketching the proof of its correctness and de-
riving its running time.

3.3.1 General Idea

The algorithm is based on Theorem 2.1.1, which states
that if P can be covered by two star-shaped polygons,
then there are polygons P, and P that cover P, and
points p; € Kr(P,), p2 € Kr(P;) that lie on exten-
sions of P. We search each extension of P in turn for
one such point, until we find it, or until all extensions
of P have been visited.

The visit of an extension ¢; proceeds by dividing it
into intervals, whose endpoints are critical points of
c;; these endpoints are called major events. For every
point p in the interior of a given interval, the equations
describing the vertices of P\ V(P,p) remain constant.
For each vertex v of P\ V(P,p), and for each ex-
tension c;j of P, v is visible from a connected subset
d of ¢j. The equations describing the endpoints of
¢’ do not need to remain constant between two ma-
jor events on c;; however they only changes when v
crosses a critical point of the edge of P to which it be-
longs. The positions of p on ¢; corresponding to these
critical points are called minor events. Both kinds of
events are stored in a heap that is continuously up-
dated during the walk along c;.

Major events are furthermore divided into two sub-
types, called left events and right events respectively.
Whenever a major event occurs at a point p of ¢;, both
a left event and a right event are added to the heap,
except for the left and right endpoints of c;, that only
have right and left events respectively. A left event
that occurs at a point p precedes the right event that



occurs at this same point p. The point p is visited
once the left event has been processed, but before the
right event is taken care of. Intuitively, left events up-
date the data structures from the situation that exists
to the left of p to the situation at p, and right events
update them from the situation at p to the situation
to the right of p.

The algorithm visits all subintervals of c;, and all
of its critical points, from left to right. For each one,
for each vertex v of V(P,p), and for each extension c;
of P (j # i), it computes the endpoints of the subset
of c; which sees v. A two-cover of P by star-shaped
polygons is found when there are extensions ¢; and c;,
and a point p of ¢; such that the intersection, over all
vertices v of V/(P,p), of the subset of c; which sees v,
is not empty.

Straightforward implementations of the above out-
line would lead to algorithms that run in O(n®) or
O(n®logn) time. By updating incrementally the set
of vertices of P\ V(P, p), and the equations of the end-
points of the subsets of each c; that see each of them,
we can reduce this time to O(n*). The following sub-
sections describe how this can be done.

3.3.2 Maintenance of P\ V(P,p)

We now describe the subroutines that maintain the
portions of the data structures that are related to the
vertices of P\ V(P,p). These vertices can be subdi-
vided into two classes : those that are vertices of P,
and those that belong to the interior of edges of P.
For each extension c;j of P (j # i), we maintain two
trees of linear-rational functions: one contains the up-
per envelope of the functions describing left[c;, v] for
each vertex v of P\V(P,p), and the other contains the
lower envelope of the functions describing right[c;, v].
To add a vertex v of P to P\ V(P,p), we first find
the subset I of ¢; which contains p and for which visa
vertex of P\V(P,p). We then add the endpoints of the
subset of each c¢; that sees v to the appropriate trees of
linear-rational functions. Deleting v from P\ V(P,p)
only requires these nodes to be deleted from the trees.
Insertions of vertices of P \ V(P,p) that are not
vertices of P require more work, because the vertices
of P that are left-limiting and right-limiting for them
on extensions of P may change even when p is not
- a critical point of ¢;. Thus the insertion subroutines
need to add minor events to a heap (minor events are
discussed in Section 3.3.3). Each edge e; of P may
contain up to two vertices of P\ V(P,p) (left[ex,p]
and right[ek,p]). We only describe the insertion and

deletion of left|ex, p], since right[ei, p] can be handled
symmetrically.

To insert a vertex v = left[ex,p] of P\ V(P,p) into
the data structures, we first compute the subset I of
¢; that contains p and for which the position of v on ¢;.
remains described by the same linear-rational function
as at p. We then compute, for each extension c;, the
functions describing the left and right endpoint of the
subset of ¢; that remains visible from v as p moves
inside I. These functions need not remain constant
over the whole interval I, so we insert their values at
p in the trees, and add minor events to the heap at
the points (of ¢;) at which they may change.

Deletions of vertices of P \ V(P,p) are performed
by removing from the trees corresponding to each ex-
tension c; the nodes describing the endpoints of the
subset of ¢; from which the vertex of P\ V(P,p) is
visible.

Each of the procedures described in this subsection
run in O(n?) time : each performs up to O(n) inser-
tions and deletions in a tree of linear-rational function,
and each such operation takes O(n) time by Theo-
rem 3.2.1.

3.3.3 Major and Minor Events

A major event occurs at each critical point p for the
extension ¢; on which the point p is traveling. At
each such point, one or several vertices may need to
be inserted in P\ V(P,p) or deleted from it. The in-
tersection trees for all extensions of edges of P need
to be updated accordingly. Throughout this subsec-
tion, we shall use the line of support of ¢; as our axis
of reference, with p moving from left to right on this
line.

We only describe the manner in which left events
are handled, since right events are taken care of sym-
metrically. This is done by visiting every vertex of P
that generates p, and updating some pointers to ver-

‘tices that are needed when this vertex is dealt with.

We shall omit the detailed description of this opera-
tion. Every time that a vertex of P\ V(P,p) appears
or disappears, one of the procedures described in the
previous subsection is used. Each such insertion or
deletion can be done in O(n?) time.

Minor events occur when a vertex v of P\ V(P,p),
moving along an edge e of P as p moves along exten-
sion ¢;, comes to a point that is critical for e. These
are the points of e at which the equations describing
the left and right endpoints of the subsets of exten-
sions of P visible from v change. We need to visit
each chord c; for which the functions describing the
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endpoints of the subset of c; that sees v change, and to
update the trees containing these functions. Each such
operation can be done in O(n) time, since it involves
a constant number of insertions and/or deletions in
trees of linear-rational functions.

Once an event at a point p of ¢; has been dealt
with, we check each pair of trees that was updated
for a solution. This can be done by finding a point
that lies above the upper envelope corresponding to
left[cj, wi], and below the lower envelope correspond-
ing to right[c;, w;]. If this point exists, then we obtain
a pair of points of ¢;, c; whose visibility polygons cover
P. Such a check takes O(n) time for each extension
that needs to be verified.

3.4 Correctness and Running Time

Using the lemmas and theorems that we developed in
Section 2, we can show that, at each point as we move
p on each c;, the pair of trees corresponding to each c;
contain the functions describing the endpoints of the
subsets of ¢; that see each vertex of P\ V(P,p).

Suppose that P can be covered using two star-
shaped polygons. By Theorem 2.1.1, each of these
polygons contains a kernel point that belongs to an
extension of P. We eventually examine an interval
containing such a point p; assume that it belongs to
Kr(P,). We know that the point p’ that is contained
in Kr(P;) and belongs to an extension c; sees all ver-
tices of P\ V(P,p). Thus the pair (p,p’) lies above the
upper envelope of the left endpoints of the subsets of
c; visible from each vertex of P\ V(P,p), but below
the lower envelope of the right endpoints of these sub-
sets, and will be found. It is also clear that no anwer
will be found unless one exists.

All preprocessing needed by our algorithm can be
done in O(n?logn) time. Since only O(n3) events oc-
cur during the execution of our algorithm, the total
time needed for heap operations in O(n®logn). Each
extension ¢; has only O(n) critical points, at which
O(n?) work needs to be done. Since O(n?) minor
events will be handled during the traversal, and since
each of them requires O(n) time, the total amount of
work that needs to be done for each extension that
is visited is O(n3). The total size of the trees is
O(n?logn). We have thus proved that

" Theorem 3.4.1 The outlined algorithm returns two

star-shaped polygons Py, P, covering the input polygon
P if and only if two such polygons ezist, and runs in
O(n*) time using O(n?logn) space.

4 Conclusion

We have given an algorithm to find a two-cover of a
simple polygons by star-shaped polygons, if one ex-
ists, in O(n*) time and O(%log n) space. This result is
probably not optimal, and finding how to improve it
remains open.

The main difficulty that needed to be overcome to
find this two-cover was that the kernel points do not
need to be intersection points between two extensions
of P. It is not clear if this is also the case when P
is L4-convex, but not Ls-convex. If not, the latter
problem might be simpler.

It also remains to determine whether the methods
that were used in this paper can be extended to solve
covering problems for other small values of k, for in-
stance for k = 3, or for polygons of link-radius j (a
polygon P has link radius j if there is a point = of P
such that, for each p € P, there is a path between z
and p using at most j edges).
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