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Abstract

We explore two primary types of segment vis-
ibility graphs: those whose nodes are the seg-
ment endpoints, and those whose nodes are
the segments themselves. Several subclasses of
these graphs can be identified by specializing
the class of segments considered, or restrict-
ing the type of visibility permitted. We obtain
several new results on the structure of these
visibility graphs.

1 Introduction

We call the two primary graphs mentioned in
the abstract “endpoint visibility graphs” and
“segment visibility graphs.”

2 Endpoint Graphs

An endpoint visibility graph G of a set S of
closed, disjoint line segments has a node for
each segment endpoint, and an arc between two
nodes z and y if [z,y] N S = [z,4] or {z,y},
where [z,y] is the segment between z and y.
We say that the two endpoints z and y are vis-
tble to each other, or that they see each other.
Note that G contains an arc corresponding to
each segment in S.

Here the focus of our attention has been
the outstanding conjecture! that the endpoint
visibility graph for a set of noncollinear dis-
joint segments has a “simple” Hamiltonian
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1This conjecture has been formulated by several
researchers independently: Mirzaian [Mir92), Tous-
saint [Tou92], and (later) in [OR91].

cycle, one that does not self-cross when its
nodes are embedded at their corresponding
endpoints. Mirzaian first proved this for what
we call hulled segments:> segments each of
which touches the convex hull of the seg-
ments [Mir92].2 We offer four new results on
this conjecture, each for a special class of seg-
ments.

1. Hulled Segments

We offer a different proof of Mirzaian’s re-
sult on hulled segments: that the endpoint
visibility graph always includes a circum-
scribing Hamiltonian circuit or circum-
scribing polygon, i.e., a circuit that is sim-
ple and circumscribes the segments. Our
proof does not assume noncollinear end-
points as does his, so establishes the result
for a somewhat wider class of segments.4

We prove a particular naive algorithm al-
ways finds the circuit: “wrap” the seg-
ments in order around the hull in a saw-
tooth fashion, and adjust the path in the
obvious way when it touches itself. See
Fig. 1. The algorithm is simple but the
proof of correctness is not.

2. Independent Segments

We define a set of segments to be inde-
pendent if for each s in the set, the line
containing s does not meet any other seg-
ment in the set. For this class we prove the
endpoint visibility graph always includes a

2This class of segments was introduced by Toussaint
in 1985 [Tou92]. ]

3If all segments are collinear, they are hulled but
have no Hamiltonian cycle with our definition of visi-
bility.

4 Although this assumption is sometimes critical for
visibility graph structure, it seems likely that the as-
sumption of nondegeneracy in [Mir92] is inessential.
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Figure 1: Hamiltonian cycle found by hulled
segments algorithm [OR91].

circumscribing ‘Hamiltonian circuit. This
is a relatively easy result.

3. ¢-Orderable Segments

This somewhat unnatural class demands
that there exists an ordering of the seg-
ments s;,Ss,... such that s; can form a
quadrilateral ¢ with s;_; using visibility
edges, such that no quadrilateral edges de-
termined by the segments up to s;_; cross
g. Here we can prove the endpoint visibil-
ity graph always includes a simple Hamil-
tonian circuit. This result is not difficult,
but points toward more natural classes
of segments (we call one “shellable”) for
which we could not establish the conjec-
ture.

4. Unit Lattice Segments

For any set of disjoint segments with end-
points on the integer lattice, and each of
unit length (so all segments are vertical
or horizontal), we prove that the endpoint
visibility graph always includes a simple
Hamiltonian circuit. See Fig. 2. Despite
the highly constrained nature of this class
of segments, our proof of this result is non-
trivial.

3 Segment Graphs

The segment visibility graph for a set of disjoint
segments associates a node for each segment
and an arc between segments a and b if some
point of a can see some point of b. Here we ex-
amined three classes, dependent upon visibility
restrictions: what we call H-visibility graphs,
HV-representations, and unrestricted segment

graphs.

Figure 2: Simple Hamiltonian circuit through
unit lattice segments.

3.1 H-visibility graphs

This is the most-studied segment visibility
graph: visibility is restricted to a single direc-
tion, which we take to be horizontal. So there
is an arc between segments a and b iff there
is a horizontal segment between a and b that
does not touch any other segment. One reason
this class of graphs has been scrutinized is their
obvious relevance to sweepline algorithms.

For these graphs, as with many visibility
graphs, the structure is very much depen-
dent upon whether or not three endpoints of
the segments are collinear. For vertical seg-
ments with no collinearities, Luccio et al. ob-
tained a characterization in terms of a cer-
tain multigraph [LMW87]. For vertical seg-
ments with collinearities permitted, Tamassia
and Tollis [TT86] and Andreae [And89] ob-
tained complex characterizations, but Andreae
proved that the recognition problem is NP-
complete and so no “good” characterization is
likely.

Here we offer two new results.

1. Slanted = Vertical

We prove that the H-visibility graph for
every set of segments whose endpoints
have distinct vertical coordinates, is real-
ized by a set of vertical segments. Thus
slanted (nonvertical) segments yield the
same class of graphs as vertical segments
under the noncollinearity assumption.

2. Characterization

The class of graphs realized as H-visibility
graphs of segments whose endpoints have



distinct vertical coordinates, is precisely
planar graphs that have an embedding
such that, for every interior k-face in the
graph, the induced subgraph of the k-face
has exactly 2k — 3 edges.

Both of these results are nearly implicit
in [LMW87].

3.2 HV-Representations

As a median between H-visibility graphs and
unrestricted segment visibility graphs, we ex-
amined two directions of visibility, which we
take (without loss of generality) to be horizon-
tal and vertical. We obtained two results.

1. G mating with G

If a graph G can be realized as both
the H-visibility graph of a set of seg-
ments, and simultaneously as the vertical
V-visibility graph of the same set of seg-
ments, then we say it has an HV-visibility
representation. If collinearities are for-
bidden, then we prove that every graph
that has an H-visibility representation also
has an HV-visibility representation. If,
however, collinearities are permitted, we
do not know whether existence of an H-
visibility representation implies existence
of an HV-visibility representation.

2. Pairs of graphs

Generalizing to pairs of unequal graphs,
we say that (G,G’) have an HV-visibility
representation if there is a set of segments
whose H-visibility graph is G and whose V-
visibility graph is G’. Here we only know
that if collinearities are permitted, there
exist pairs of graphs, each representable
with one direction of visibility, which do
not have an HV-visibility representation.

3.3 Segment Visibility Graphs

For unrestricted visibility, we obtained two re-
sults and formulated one conjecture.

1. Connection to Polygon Visibility Graphs

We noticed a curious connection to ver-
tex visibility graphs of polygons, seem-
ingly rather distantly related. Neverthe-
less ElGindy’s result [0’R87] that the class
of polygon visibility graphs includes all

mops® can be reinterpreted to say that the
class of segment visibility graphs realized
by vertical segments includes all mops.

Similarly, the recent characterization of
staircase visibility graphs [AEK91] can be
interpreted as a characterization of seg-
ment visibility graphs for a subclass of ver-
tical segments.

2. K4’s

We can make one observation about the
general structure of segment visibility
graphs. Let S be a set of n > 1 segments
such that no three endpoints are collinear,
and let G be its segment visibility graph.
Add an infinite vertical segment to the left
and one to the right of S, and call this
augmented set S’ and its segment visibil-
ity graph G’. Then we prove that, for ev-
ery vertex a € G, there exist three other
vertices b, c,d € G’ such that the induced
subgraph of a,b,¢, and d in G’ is K4. The
proof is not difficult, but at least shows a
certain density of edges incompatible with
planarity.

3. Perfect Matching Conjecture

Although there are easy examples of seg-
ments whose graph contains no Hamil-
tonian path, we have no counterexample
to this hypothesis: the segment visibility
graph for every set of segments has a per-
fect matching.® We have proven it for sev-
eral classes of segments, e.g., independent
segments.
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