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1. Introduction

The star and pancake networks were proposed in [1,2] as attractive alternatives to the hypercube topology for
interconnecting processors in a parallel computer. Each has a rich structure, a small diameter, and many desirable
fault tolerance characteristics. In this paper, we present several data communication algorithms for these two net-
works. These algorithms are then used to solve several computational geometric problems on the star and pancake
interconnection networks. One of the results of the paper is that the convex hull of a set of n! planar points can be
computed on a star or pancake network with n! nodes in O (n’logn) time. This time complexity matches that of the
best known sorting algorithm on each of the two networks. :

Let V, be the set of all permutations of symbols 1, 2, .., n, a star interconnection network on n symbols,
S,=(V,, Es,), is a graph of n! nodes where each node is connected to n ~1 nodes which car be obtained by inter-
changing the first symbol of the node with the i* symbol, 2 <i < n. Fig. 1 shows S,. S, is also called an n —star. A
pancake interconnection network on n symbols, P,=(V,, Ep ), is also a graph of n! nodes where each node is connected
to n —1 nodes which can be obtaincd by flipping (thus the name pencake) the first i symbols, 2 < i < n. Fig. 2 shows
P,. P, is also called an n —pancake. Clearly, S, = P,, for n < 3. Both S, and P, have O (n) diamcters, and for any
two arbitrary nodes u and v, it is easy to find a path from u to v of length less than 21 [1,2]. Since most of our discus-
sion applies to both star and pancake networks, we use X, to denote cither S, or P,.
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Figure 1. A 4-Star. Figure 2. A 4-Pancake.

2. Data Communication algorithms
Definition 1. X, _,(i) is a sub-graph in X, induccd by all the nodes with the same last symboli, 1 <i < n.

It is easy to sec that S,_,(i) is an (n —1)-star and P,_,(i) is an (n —1)-pancake. For example, S, in Fig. 1 con-
tains four 3-stars, namely S5(1), S3(2), S5(3), and S;(4). :

Definition 2. Let @,a, - - a, and b\b, - - * b, be two processors (pcrmutations) in X, the ordering, <, on the
processors is defined as follows: a,a, - - @44, - - a, < byb, - bb,y, - - - b, if there exists ani, 1 < i < n, such that
a; = b; for j > i, and @, < b;. In other words, the processors are ordered in reversed lexicographic order (lexico-
graphic order if we read from right to left). In X, the rank of a node u is the number of nodes v such that v < 1, i.c.
rank (u) = |{v |v < u, veV,}|.

If we write down all the nodes in X, according to their ranks and arrange them into an n X (n —1)! array, then
row i becomes X, _;(i). The nodes in X, are given in Table 1.

Table 1 Table 2
4321 3421 4231 2431 3241 2341 1324 1423 1234 1432 1243 1342
4312 3412 4132 1432 3142 1342 2314 2413 2134 2431 2143 2341
4213 2413 4123 1423 2143 1243 3214 3412 3124 3421 3142 3241
3214 2314 3124 1324 2134 1234 4213 4312 4123 4321 4132 4231

From the definitions, we can see that all the nodes in the same column of Table 1 have the same rank in their respec-
tive X,_,’s. For example, nodes 2431, 1432, 1423, and 1324 are all ranked third in X,(1), X,(2), X,(3), and X,(4),
respectively.
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In S, if we we exchange the 1" symbol with the last one in each node, we get another 1 x (1 —1)! array (Table 2)

in which each column is connected to form a linear array by the definition of S,. If nodes in Table 1 are considered in
P, then we also get Table 2, in which columns are permuted, by flipping the entire nodes, i.e. node a, ** - a, becomes
a, * - - a,. But these columns (as in Table 2) are not connected in P, (for n>4) to form linear arrays. A routing
scheme dcveloped in [8] enables us to route the data in row i (Pa-1()) to row i +1 (P,_,(i +1)) in constant time in
such a way that if node p is ranked r* in P,_1(i) then its data is sent to node q in P, -1(f +1) which is also ranked 7 in
P,_1(i +1); that is, p and q are in the same column as in Table 1. Henceforth, we will assume for simplicity that all
the columns as in Table 1 are connccted either in S, or in P, without performing a constant transformation or routing.

Broadcasting. Suppose that onc node wants to send the same message to all the other nodes in X,. A simple
O (nlogn) broadcasting algorithm is presented in [4,9] which works for both networks. References [1] and [2] also give
O (nlogn) algorithms for S, and P, separately.

Prefix Sum, Maximum, Minimum, and Ranking. An O (nlogn) parallel prefix sum algorithm for X, can be
found in [4,9] with respcct to the processor ordering in Definition 2. If we let the associative operation in the prefix
sum algorithm be max or min, then the maximum and minimum of n! elements can be found in O (nlogn) time. The
final result is reported in the last node 123 - - - n. In X, some nodes are marked (selected). The rank of a node u is
the number of marked nodcs that precedes u (compare to Definition 2). The ranks of all the marked nodes can be

computed by applying the prefix sum algorithm once, with the associative operation being the usual addition +, each
marked node having value 1, and others having value 0.

Sorting and Merging. Given a sequence of processors cach holding one element, we say that the sequence is
sortcd in the F (forward) dircction if xep, Y€q, and p <q, then x<y. The R (reverse) direction is defined similarly.
Sorting on S, has becn considered in [6] in which an O (n°logn) algorithm is given. For sorting on P,, an O (n*logn)
algorithm is proposed in [8]. Given two sorted scquences stored in two groups of X, _,’s:

A X, (i), X, (i +1), .y Xooi(k),

B: Xn—l(k +1)» X;l—l(k +2)9 it Xli—l(j)’
i<, (4 and B do not nccessarily contain the same number of X,-1’s), such that 4 and B are in opposite directions, the
results of [6] and [8] imply that they can be merged into sorted sequence in either direction in O (#?) time. The merg-
ing algorithm can be generalized as

General_Merging (D)
1. in parallel Sort the columns in direction D
2. in parallel Sort each row in direction D

which also takes time O (n2), where D is either F or R. Note that whenever a group of ! consecutive X,_’s are con-
sidercd, 1</ <k <n, it is always arranged into a /x(k —1)! array such that each row is a X, in which nodes are listed
in the increasing order according to their ranks. That is, sorting or merging on X, is reduced, in this way, to sorting
on the columns, and these columns arc "connected”. Since each column is connected as a linear array, the odd-even
transposition sort [5] can be applied.

Unmerging. Given a sorted list stored in group C: X, _,(i), X,,_,(i +1), s X, 1(), i < j, such that the sorted list
is obtaincd by merging two sorted sublists in two groups
Al X (@), Xy +1), oy X,y (K),
B:Xn-l(k +1)) Xn—l(k +2)) it ‘Xn—l(j)’
- and each clement knows the rank of the node it was in originally before the merging. This rank is the rank of the
node in X, (i), .., X,_,(j). The problem of unmerging is to permute the list to return each element in C to its origi-
nal node in 4 or B. It is the inverse of merging. The problem can be solved by running the General Merging (F) in
reverse order using the given rank information. Let the rank of node & be r(u), then when unmerging, we use the

value [r(u)/(i —1)!] mod i, i = 2, 3, ..., n, in the comparisons in the different stages. Since merging takes time
O (n*), so does the unmerging.

Translation (Cyclic Shift). If we order all the nodes in X, by ug, uy, ..., u,_,, such that u; <u;ifi < j,in the
operation translation, node u; has to send its data to node u;,, (moa nty concurrently for 0 <i < n !-1, for some s
1 <s < n!-1. Translation is also called cyclic shift.

At the end of unmerging, we introduced values P @)/G—1)!) mod i, 2 <i < n, for each node. These values
can be viewed as the the address (or coordinates) of a node u, x,x; * - - x,, with x, being |r(u)/(i —=1)!] mod i,
2<i<n,and 0 £y <i—1. For node u with rank r(u) and address xx, - - - x,, it is to be shifted to a node with rank
(r(u)+s) mod n). The address yyy, - - - Ya for the new node can be computed accordingly. Using the new address, a
translation can be accomplished by running the General Merging (F) algorithm or running it in reverse order with the
new addresses used in different stages. If we run the General Merging (F), the odd-even transposition sort will be
performed on lincar arrays of length n, n =1, .., 2, the values in the comparisons will be Yns Yn-15 «y ¥2. They are
reversed il General Merging (F) is run in reverse order. What is done is that at iteration i, the i* coordinates of u
and the node it is going to be cyclically shifted to are matched. Note that when (n —1)! | 5, translation can be done in
O (n) time since only y, #x,, while yi=x, for 2<i<n —1. "
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Concentrate and Distribute. Some nodes of X, contain “active” elements. The rank of an active node is the
number of active nodes preceding u. These active elements are to be compressed (concentrated) so that they are
stored in nodes 0, 1, 2, ..., such that the active element originally in node u is now in node r (1), i.e. the relative posi-
tions of active elements to each other remain unchanged. A concentration can be done in O (12?) time by running the
General Merging (F) in reverse order with values x,, X3, ..., X, XoX; - * * X, being the address of node r (1), A distribu-
tion is simply the inverse of a concentration, and can be done by running the Concentrate in reverse order: running
the General Merging (F) with values x,,, x,y, ..., X3, X,.

Reversal In X,, the element in node u ranked r(u), 0<r(u)<n!-1, needs to go to node ranked 1=1-r(u).
This can also be done by running the General_Merging (F) or in reverse order using the new addresses (the addresscs
after the reversal). Reversal is needed when two sorted sequences in the same direction are to be merged, one of
them is reversed first, then the regular merging is carried out.

Interval Broadcasting, In X, certain nodes are marked as leaders /,, 1, ..., I;, with [, < I ifi <jandk <ny
they possess data that they must share with all the higher ranked nodes (in terms of the processor ordering defincd
before) up to but not including the next leader. That is, each marked node /; has to broadcast its message to the inter-
val of nodes between /; and /;,,. Interval broadcasting can be done in O (nlogn) time by running the prefix sum algo-
rithm once, where each leader holds an index (processor rank) as well as its message, and each non-leader has initially
an index of —1, i.e. each message is associated with an index, with the associative operation being "take the largest
index and the largest indexed value of the two indexed messages".

The interval broadcasting algorithm can be used to accomplish a translation of +1 positions. We can do so by
applying the interval broadcasting algorithm twice: for the case s = +1, we first let lcaders be even numbered nodes 0,
2,4, .., n!=2, then do the interval broadcasting so that their data are shifted to nodes 1, 3, 5, ..., n!—1; in the sccond
time, the leaders are 1, 3, 5, .., n!—3 and after the intcrval broadcasting, their data arc in 2, 4,6, ..., n1-2; finally the
content of node n!—1 can be routed to node 0 in O (1) time, so the total time for the translation is still O (nlogn).
For the case s = —1, the translation can be done in the similar way except that the ordering of the nodes is reversed,
i.e., node i becomes node n!—1—1.

Cousins. Let 4 and B be two sorted lists stored in two groups of X,,_,’s, the cousins of a € A in B arc two con-
secutive elements in B so that a is in between them in sorted lists 4UB. The cousins in B of each elcment in 4 can be
determined in O (#%) time on X,, or a group of consecutive X,,_,’s by merging and intcrval broadcasting. The ranks of
two cousins b, and b, from B for an element @ € 4 are determined by (b, B) = r(a, AUB) - r(a, A) and r(b,, B)
= r(b,, B) + 1, where r (x, Y) denotes the rank of an element x in the sorted set X.

It is easy to see that all the algorithms of this section apply not only to X,, but also to a group of consccutively
numbered X, _,’s. :

3. Geometric Algorithms on the Star and Pancake Networks

Divide-and-conquer is a common strategy to find the convex hull H(S) of a set of points S. Given n! planar
points stored in X, we first sort the points by their x-coordinates. Now n disjoint convex hulls of (n —1)! points cach
are found recursively in parallel in X,_;(i), 1 £i £ n. These convex hulls are then merged repcatedly until a final
convex hull is obtained. The algorithm is therefore as follows:

1. sort the n ! points by their x-coordinates
2. Procedure CONVEX-HULL (X,)
do in parallel for1 <i <n
CONVEX-HULL (X, _,(i))
for j=1to [logn] do
1. Starting with row 1, arrange all rows (X,,_,’s) into groups of 2/
consecutively numbered rows. The last group may not have all 2/ rows.

2. in parallel merge within each group of two sub-groups of < 2! consecutive rows cach
end CONVEX-HULL

We now describe the merge procedure based on the merging slopes technique. Let H (P) and H (Q) be two dis-
joint convex hulls of two sets of points P and Q. H (P) and H (Q) are stored in two groups of X,,_,’s; H (P) and H(Q)

are merged to form a bigger convex hull by computing two common tangents of H (P) and H (Q). The following tech-
nique of merging is adapted from [10].

Definition 3. The distance of a point to an oriented edge p is the distance from the point to a line containing p,
with the distance of point to the left (right) of p being positive (negative). The a-distance of a point to p is its distance
to the edge p’ obtained by rotating p by the angle @ in counterclockwise direction around a point (the results of
queries below do not depend on the choice of this point).

Let 4 and B be two convex polygons in the plane, cach containing O (k (n —1)!) edges stored in groups of k
X.-1’s, 1 <k < n—1, given in counterclockwise order. Given an angle a, consider the following problem (we call it



the extremal search problem ES (4, B, a@)): For each edge p € 4 find a vertex v, € B with the smallest az-distange:5 %0
p among vertices from B (v, is called an associated point of P in direction a). It is easy to see that for a = 0 (¢ =m)
v, is the vertex with the smallest (greatest) distance from p among vertices of B. For a = /2 (@ =3x/2) v p is the
casternmost (westernmost) point of p.

We use the following property of associated points: the associated point v, € B (in direction ) of an edgep € 4
belongs to an edge p* € B such that |s(p)+a—s (t) | is minimized on B for t = p’ (where s (e) denotes the angle of
e; all angles are measured with respect to x-axis). In other words, the associated point of p belongs to a cousin of pin
B.

We now describe the procedure ES (4, B, @)). We first increase the angles of edges of A by a. The edges with
minimal angles in 4 and B are recognized and by some translations they are moved to the first nodes of the
corresponding groups of X, _’s. Since angles of edges of both convex polygons are then given in increasing order, the
sets 4 and B can be mcrged by their angles in O (n?) time. Now sets A, B, and AUB are sorted and each edge e of 4
can find its cousins in B by intcrval broadcasting (the last leader broadcasts its data to all the nodes preceding the first
leader). We use the unmerging technique to return all edges to their initial positions.

In order to merge H (P) and H (Q), we decide for each of their edges whether it is an external or internal edge,
Le. il it is a convex hull edge of H (S) as well. To judge if an edge is external, we need to test if H (P) and H(Q) are
in the same half-plane bounded by the edge. However, instead of testing all the vertices of H (Q) with an edge e of
H (P), we only test two representatives (associated points of e) such that if they are in the same half-plane bounded by
¢ as H (P), every point in H (Q) is. These two representatives for e in H(P) (¢ in H (Q)) are the nearest and furth-
crest extreme  points from H(Q) (H(P)) and are obtained by calling procedures ES (H(P), H(Q), 0),
ES(H (P), H(Q), =), ES(H(Q), H(P), 0), and ES (H(Q), H(P), 7). Now each edge can decide in constant time if
it is cxternal or not. Then cach extreme point of H(P) or H(Q) can learn if it is an extreme point of H(S) (transla-
tion by 1 can be used to find the necessary data). Two of them in both H (P) and H(Q) share an external and an
internal edge. These four points determine two common tangents of H(P) and H(Q). Then the computation of the
circular cdge list of H (S) can be done in O (n?) time by some translations.

As we can see, the computation is dominated by merging and translation, which take O (n?) time, while interval
broadcasting takes only O (nlogn) time. This merging procedure is repeated O (logn) times. If we let t(n) be the time
to find the convex hull of n! planar points, then t(n) =t(n—1) + O (tlogn) = 0O (n*logn). Thus,

Theorem. The convex hull of 1! planar points can be computed in O (n*logn) on S, or P, with n! processors.

Using the merging slopes technique, many other gcometric problems can also be solved. They are, finding criti-
cal support lines of two convex polygons, finding the smallest enclosing box, the diameter of a set of points, the width
and the minimax lincar fit of a sct of planar points, the maximum distance between two convex polygons, and the vec-
tor sum of two convex polygons. The details of the algorithms and their complexities can be found in [4]. Other algo-
rithms for computational geometric problems can also be found by using our data communication algorithms.
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