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Oun the Zone of a Co-dimension p Surface in a Hyperplane Arrangement*

M. Pellegrinit

Abstract

A recent work of Aronov and Sharir gives almost tight bound on the complexity of all cells
in an arrangement of hyperplanes that are intersected by an algebraic surface of co-dimension
I. We extend their result to the case of a surface of co-dimension p- The upper bound is
O(n*=1r/2 16g» n). Where €p i8 0 for p even, 1 for p odd. The lower bound is Q(nd- fx’/ﬂ), The
upper bound is tight for even p, and almost tight for odd p-

1 Introduction

A recent result of Aronov and Sharir on the zone of a surface in an arrangement of hyperplanes in
[AS91] is the following: any algebraic surface of bounded degree and of co-dimension 1 intersects
cells in an arrangement of hyperplanes whose total complexity is O(n?~!log n). In this paper we
generalize the result of [AS91] to surfaces of co-dimension P, 0 < p < d. We aim to achieve a
complexity that is roughly O(nd-Ir/ 2]) since this is a lower bound for this problem.

2 Lower bound construction

The lower bound is meaningful for d > p. We prove the lower bound by induction on d. For
d = p a co-dimension p surface is a point. The cell containing the point can have complexity
o(nlr/2ly — O(ur=Ir/ 2]) by the upper bound theorem for simple polytopes [Ede87]. This proves
the bound for d = p. Assuming there is a construction for dimension (d — 1) attaining the bound,
we can extend every hyperplane and the surface orthogonally in the d-th dimension. Moreover we
introduce a linear number of hyperplanes orthogonal to the z4-axis. '

Svery cell in the original (d — 1)-dimensional is replicated n times. And every cell intersected

by the surface on R4~! generates cells cut by the surface in dimension RY. Therefore we obtain the
bound Q(nt-1-[p/21py) Q(nd-Ip/21),

3 A geometric lemma

Lemma 1 ('iven a simple hyperplane arrangement A(H), a face f of A(H), and a point v ¢ f,
let u be the point in f closest to v, then there is a cell C incident to f such that u is the point of
C closest to v.

Proof.
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1. If f is a vertex, then f = u. Let Hy be the set of d hyperplanes in R¢ meeting in u. We show

that there is one cell in the cell complex A(H;) for which u is its closet point to v. Note that
all cells in A(H/) are cones with one vertex, therefore we talk of a cone complez.

We define h;‘a = {z|(z — a) - b > 0}, in words, the halfspace supported by the hyperplane

through a orthogonal to b and containing the point a + 5. For a cell C in A(Hy), the
complementary cone C' is :

r_ +
C - n h“"qv“
9€Cq#u

Intuitively, C’ is formed by taking halfspaces through u whose opposite normal vector is inside
C. We prove the following:

(a) If v € C’ then u is closest to v than to any other point in (.

(b) The set P’ of complementary cones of cones in a cone complex P is a cell complex
covering all RY.

Consider a point «’ € C' with 4’ # u. Since v € C’ the hyperplanc hyu—ur separates » from (.
The angle u'uv is greater than or equal to /2. This implies that the segment w'v is longer
than the segment 1iv.

From Lemma 3.1 (2) in [Cla87], a complementary cone is generated by intersecting halfspaces
corresponding to the directions of edges of C (defining extrC the set of vectors corresponding
to edges of C, C' = Nyeeatrc hify)-

A set of d hyperplanes generates d 1-flats: each 1-flat generates one hyperplane and 2 halfs-
paces. Under this correspondence between edges and halfplanes, the set of cdges of P induce
a cell complex P” with 2¢ cells. Since the correspondence between cones in P and P’ is I-1
we have that the set P’ of complementary cones is exactly the set P” and, by construction,
P’ covers the whole space.

. Suppose u € int(f). Let f be a face of dimension k (i.e. it is contained in the intersection of

a set (Hy) of d — k hyperplanes). If u € int(f) then u is the point of «ff(f) closest to v. The
set of hyperplanes H; divide the space into 24~ regjons.

A set P is polyhedral if it is the intersection of a finite set of halfspaces. In [Gru67] it is
proved that any polyhedral set admits a representation P = L+ + (LN P), where [ is a lincar
subspace, Lt is its orthogonal complement, + is the pointwise sum of point-sets, and L, N P’
is a polyhedral set whose faces have at least one vertex.

Similarly, (d — k) hyperplanes generate a cell complex P of 2¢-F colls sharing a common
k-flat. P admits a represation P = L + (LN P) where L1 is the common k-flat and 7, is an
orthogonal (d — k)-flat. We can choose L such that u € L and uv C L. Morcover, LN P is a
cone complex of cones sharing a common point, which is «.

Using part 1. of this proof we find a cell C in P N L for which u is the closest point, to wv.
Let ¢ be any point in the cell C + Lt. Clearly, there is a point ¢’ € C such that qgeq + L.
Using Pitagora’s theorem |vg’| < |vg|, therefore |vu| < |vg].
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3. Suppose u ¢ int(f) and f has dimension k > 0.

If w & int(f) then there is a face g, which is facet of f, such that u € g. Also, u is the closest
point in g to v. By induction on k we have a cell C, which has u as its closest point to wv.
Cell Cy is adjacent to g and to the hyperplanes in Hg. Cell Cy is adjacent also to Hy C H,
and therefore it is adjacent to f.

4 Proof of the Zone theorem for co-dimension p surfaces

For a d-polyhedron P, let fi(P) be the number of k-faces of P (i.e. faces of dimension k). Let
Zs(H) be the set of cells in A(H) whose relative interior has a non empty intersection with o C R¢.

We denote zx(o, H) the Y_cez,(H) fe(closure(C)). We set n > 0,d > 0,0 < k < d, and by
zk(n,d) we denote the maximum of zi(o, /) over all o algebraic surfaces of bounded degree 6
and co-dimension p, and all sets of n hyperplanes. First we notice that a standard perturbation
argument proves that the maximum of zi(n,d) is attained when the hyperplanes in H are in
general position and o is in general position with respect to H [Gru67]. Under the general position
assumption, a k-face [ in A(H) lies in exactly (d — k) hyperplanes and is part of the boundary of
24k cells of A(/). More than one of those cell can lie on Zs(H), thus the contribution of f to
zi(o, ') can be more than one.

We define a k-border as a pair (f,C), where f is a k-face and C a cell having f on its boundary.
Thus zi(a, ') counts all k-borders in Z,(H ) once. More generally, a (k,¢)-border, 0 < k< i< d
is a pair of faces (f,g) of dimensions k and i respectively, such that f C closure(g). Note that
k-borders are (k,d)-borders.

We call an i-face popular if all the 29=* incident cells are in the zone Z,(H). A (k,?)-border
(f,9) is popular if g is a popular i-face. :

Definition 1 7{(X, Il) is the number of popular (k,i)-borders in the zone of X C R% in the
arrangement of H .

Note that zx(a, H) = r8(a, H). So by estimating r{(a, H ) for each k, 0 < k < d we find the total
complexity of the zone. We obtain such bounds inductively estimating 7}, forall 0 < k£ <: < d.

Lemma 2 1. For any subset X C R and0< k< d

b(X, 1) < (,‘f)r:f(x,ﬂ)

2. For an algebraic surface o of co-dimension p and bounded degree,
8(0, H) = O(n%P)
Proof.

1. As noticed in [AS91] it suffices to associate any popular k-face with a popular cell and argue
that each cell cannot be charged too many times. Pick up a point u in the interior of a cell
of the arrangement. For any convex set C, not containing u, there exists one and only one
point v € C such that |uv| = mingec dist(u, q), where dist is the standard euclidean distance
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in RY. Take now a popular k-face f and find its point v at minimum distance from «. We
konw from Lemma (1) that there exists one cell in Z,(H) incident to f, such that v is its
point at minimum distance from u. We associate f with this cell. Now cach popular k-face
is associated with a cell with which shares its closest point to u. No cell in the zone can be
charged more than (k) times (that is when v is a vertex), if v is not a vertex there are even
fewer possible k-flats incident on v.

2. It is enough to show that (o, H) = O(n4~?) (i.e. o meets O(n?~?) cells of A(H )). We prove
this by induction on d. For d = p a co-dimension p surface is a set of points whose number
depend on the degree é. Therefore, from the definition of Z,(H ), the number of cells is O(1).
Otherwise suppose inductively that, on each hyperplane h € H, anh meets O(n*~1-7) cells in
the arrangement induced on h by H. The surface o can intersect the cell C' in 2 cases: when
a component of o is fully contained in C and when o crosses the boundary of ('. The former
case can happen only a constant times , the latter case is bounded by O(nn?"'=7) = O(nt-?).
The number of cells in Z,(H) is O(n%-?).

|

The proof of lemma 2 (1) is a key change with respect to [AS91] since we do not have any extra
correction term polynomial in n.

Now we proceed by induction on i to derive a recurrence for r,';(a, H), for 0 < k < i. Fix an
hyperplane h € H and consider a popular (k,i)-border (fo,g0) in Z,(H ), with fo € h. When we
remove h, go becomes a possibly bigger i-face g which is also popular, morecover fj is a part of some
k-face in closure(g). So let (f,g) be a popular (k,i)-border in Z,(H — {h}). We consider what
happens when h is reintroduced. Let Cj, for I € [1,...,297%] be the cells of Z,(H — {h}) incident
to g. The following cases may occur:

1. hNg = 0, in this case g may or may not be popular in Z,(H). In the first case (f,g)
contributes one (k, ) border to the zone. In the second case (f, g) is not counted any more.

2. hNg #®and hn f = O, again (f,g) contributes at most 1, namely (f,gt) where g is the
portion of g on the same side of h as f.

3. hng # @ and kN [ # O, in this case we get 2 (k,i)-borders: (fNh?t ,gnh*) and (fNnh™,gnh~ ).
Only if both of them are popular our count will increase, i.e., let Ct = C;nht and cr
CiN h~, if 0 meets all these 2¢~**! cells . Notice that all those cells are adjacent to g N h

which is an (¢ — 1)-face in A(H). The count will increase then if g N A is a popular (i — 1)-face
in Z,(H) and (fNh,gNh)is a popular (k — 1,i — 1)-border in Z,(II).

To summarize: the number of popular (k, )-borders not contained in A is bounded by 7i(a, I -
{h}) + pr, where p;, is the number of popular (k — 1,i — 1)-borders (f’,¢") with ¢’ C h. Summing
over all h € H we have that every popular (k,?)-border is counted exactly n — d + k times. We
obtain an equation:

(n—d+k)ri(o, HY< 3 7i(o, H = {h}) + (d — i + 1)7i=} (o, )
h€eH

Where the factor (d —(i—1)) comes from the fact that we charge a popular (i —1)-face d —(i—1)
times, i.e any time h is an hyperplane containing it. Maximizing over all arrangements we goet.:
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7k (n,d) = O(n%?) (1)
Tk(n, d) S mT(n -_ l,d)+ mTk_l(n,d) (2)

Note that this is an induction in n,i and k, not in d. We assume that n > d — k and define
Ti(n,d) = (,",)¥i(n,d). Equations (1) and (2) become:

¥k(n,d) = O(n*?) (3)
: : d—i+1 . .
gb}c(n,d) < @b;c(n - l,d) + r;é:_l"‘/);c__]l(nad)’ 1<k<i<d (4)

Equation (1) can be rewritten also in the following form:

t—1
Wil d) < win — 1,) 4 SIS (5

The base case i = 0,k = 0 is dealt with by lemma 2. Similarly the case i = 1,k = 0, 1 are dealt
with by lemma 2 and by the observation that r§(n,d) < 27{(n,d), that is, vertices can be charged
to the edges.

Let us suppose now that i < p. In this case the number of popular i-faces is i(n,d) = O(n?-P).
‘The maximum complexity of an i-polytope is O(anJ) < O(nl?/2]). Therefore for every k < i
Til(n,d) = ()(n’l“r”/""]).

Now we solve the recurrence for i = p and k = [p/2]. When we have this bound, it can be
extended to every k for 0 < k < p, using the fact, consequences of the Dehn-Sommerville relations,
that the number of [p/2]-faces bounds the number of faces of any dimension [Ede87,AMS91].

Consider equation (5). We estimate up to a constant factor T,i:i(’ll,d) < n[(i’l)/QJrlf(n,d) <
nl=D/2lpd-»  §6 the fraction in equation (5) becomes nl(P=1)/21-1P/2] which is constant for p
odd, and n~! for p even. Therefore the additive term in the equation becomes 1/n or 1/n2. We
obtain ¥i(n,d) = logn or Yi(n,d) = O(1). Easily follows that ti(n,d) = O(n?*yi(n,d)) =
O(nt=1P121yyi (0, d).

For i > p we solve the recurrence (5) assuming k > [p/2]. Assume that the bound holds
inductively, and p is even, so qb;;:ll(n,d) = O(n*=1-[?/21), Inserting the bound in equation (4) we
obtain ¥i(n,d) = O(n*~17/21) which gives the final bound Ti(n,d) = O(nd=1P/21), For k < [p/2]
we have k < [p/2] < [i/2]. From the Dehn-Sommerville equations we know that for all k’s
Th(n,d) = O( T;i /21(n,d)). For p odd a similar argument holds. We summarize the above discussion
with the following theorem.

Theorem 1 The complezity of the zone Z,(H) of an algebraic surface o of bounded degree and co-
dimension p in the arrangement A(H) of n hyperplanes is O(n?-1p/2] ) for p even and O(n?~ 7/ Jog n)
Jor p odd.

This theorem includes the result of Aronov and Sharir for p = 1. The bounds are almost tight
except for the logarithmic factor for odd co-dimension.
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