On the Zone of a Co-dimension p Surface in a Hyperplane Arrangement*

M. Pellegrini[†]

Abstract

A recent work of Aronov and Sharir gives almost tight bound on the complexity of all cells in an arrangement of hyperplanes that are intersected by an algebraic surface of co-dimension 1. We extend their result to the case of a surface of co-dimension p. The upper bound is $O(n^{d-\lceil p/2 \rceil} \log^{\epsilon_p} n)$. Where ϵ_p is 0 for p even, 1 for p odd. The lower bound is $\Omega(n^{d-\lceil p/2 \rceil})$. The upper bound is tight for even p, and almost tight for odd p.

1 Introduction

A recent result of Aronov and Sharir on the zone of a surface in an arrangement of hyperplanes in [AS91] is the following: any algebraic surface of bounded degree and of co-dimension 1 intersects cells in an arrangement of hyperplanes whose total complexity is $O(n^{d-1} \log n)$. In this paper we generalize the result of [AS91] to surfaces of co-dimension $p, 0 \le p \le d$. We aim to achieve a complexity that is roughly $O(n^{d-\lceil p/2 \rceil})$ since this is a lower bound for this problem.

2 Lower bound construction

The lower bound is meaningful for $d \ge p$. We prove the lower bound by induction on d. For d = p a co-dimension p surface is a point. The cell containing the point can have complexity $\Theta(n^{\lfloor p/2 \rfloor}) - \Theta(n^{p-\lceil p/2 \rceil})$ by the upper bound theorem for simple polytopes [Ede87]. This proves the bound for d = p. Assuming there is a construction for dimension (d-1) attaining the bound, we can extend every hyperplane and the surface orthogonally in the d-th dimension. Moreover we introduce a linear number of hyperplanes orthogonal to the x_d -axis.

Every cell in the original (d-1)-dimensional is replicated *n* times. And every cell intersected by the surface on \mathbb{R}^{d-1} generates cells cut by the surface in dimension \mathbb{R}^d . Therefore we obtain the bound $\Omega(n^{d-1-\lceil p/2 \rceil}n) = \Omega(n^{d-\lceil p/2 \rceil})$.

3 A geometric lemma

Lemma 1 Given a simple hyperplane arrangement $\mathcal{A}(H)$, a face f of $\mathcal{A}(H)$, and a point $v \notin f$, let u be the point in f closest to v, then there is a cell C incident to f such that u is the point of C closest to v.

Proof.

^{*}Research supported by NSF grant CCR-8901484.

[†]New York University, Courant Institute. 251 Mercer st. NY NY 10012. e-mail: pellegri@cs.nyu.edu

1. If f is a vertex, then f = u. Let H_f be the set of d hyperplanes in \mathbb{R}^d meeting in u. We show that there is one cell in the cell complex $\mathcal{A}(H_f)$ for which u is its closet point to v. Note that all cells in $\mathcal{A}(H_f)$ are cones with one vertex, therefore we talk of a cone complex.

We define $h_{\vec{b},a}^+ = \{x | (x-a) \cdot \vec{b} \ge 0\}$, in words, the halfspace supported by the hyperplane through a orthogonal to \vec{b} and containing the point $a + \vec{b}$. For a cell C in $\mathcal{A}(H_f)$, the complementary cone C' is :

$$C' = \bigcap_{q \in C, q \neq u} h_{u-q,u}^+$$

Intuitively, C' is formed by taking halfspaces through u whose opposite normal vector is inside C. We prove the following:

- (a) If $v \in C'$ then u is closest to v than to any other point in C.
- (b) The set \mathcal{P}' of complementary cones of cones in a cone complex \mathcal{P} is a cell complex covering all \mathbb{R}^d .

Consider a point $u' \in C$ with $u' \neq u$. Since $v \in C'$ the hyperplane $h_{u,u-u'}$ separates v from C. The angle $\widehat{u'uv}$ is greater than or equal to $\pi/2$. This implies that the segment $\overline{u'v}$ is longer than the segment \overline{uv} .

From Lemma 3.1 (2) in [Cla87], a complementary cone is generated by intersecting halfspaces corresponding to the directions of edges of C (defining *extrC* the set of vectors corresponding to edges of C, $C' = \bigcap_{b \in extrC} h_{b,u}^+$).

A set of *d* hyperplanes generates *d* 1-flats: each 1-flat generates one hyperplane and 2 halfspaces. Under this correspondence between edges and halfplanes, the set of edges of \mathcal{P} induce a cell complex \mathcal{P}'' with 2^d cells. Since the correspondence between cones in \mathcal{P} and \mathcal{P}' is 1-1 we have that the set \mathcal{P}' of complementary cones is exactly the set \mathcal{P}'' and, by construction, \mathcal{P}' covers the whole space.

2. Suppose $u \in int(f)$. Let f be a face of dimension k (i.e. it is contained in the intersection of a set (H_f) of d-k hyperplanes). If $u \in int(f)$ then u is the point of aff(f) closest to v. The set of hyperplanes H_f divide the space into 2^{d-k} regions.

A set P is polyhedral if it is the intersection of a finite set of halfspaces. In [Gru67] it is proved that any polyhedral set admits a representation $P = L^{\perp} + (L \cap P)$, where L is a linear subspace, L^{\perp} is its orthogonal complement, + is the pointwise sum of point-sets, and $L \cap P$ is a polyhedral set whose faces have at least one vertex.

Similarly, (d - k) hyperplanes generate a cell complex \mathcal{P} of 2^{d-k} cells sharing a common k-flat. \mathcal{P} admits a represation $\mathcal{P} = L^{\perp} + (L \cap \mathcal{P})$ where L^{\perp} is the common k-flat and L is an orthogonal (d - k)-flat. We can choose L such that $u \in L$ and $uv \subset L$. Moreover, $L \cap \mathcal{P}$ is a cone complex of cones sharing a common point, which is u.

Using part 1. of this proof we find a cell C in $\mathcal{P} \cap L$ for which u is the closest point to v. Let q be any point in the cell $C + L^{\perp}$. Clearly, there is a point $q' \in C$ such that $q \in q' + L^{\perp}$. Using Pitagora's theorem $|vq'| \leq |vq|$, therefore $|vu| \leq |vq|$. 3. Suppose $u \notin int(f)$ and f has dimension k > 0.

If $u \notin int(f)$ then there is a face g, which is facet of f, such that $u \in g$. Also, u is the closest point in g to v. By induction on k we have a cell C_g which has u as its closest point to v. Cell C_g is adjacent to g and to the hyperplanes in H_g . Cell C_g is adjacent also to $H_f \subset H_g$ and therefore it is adjacent to f.

4 Proof of the Zone theorem for co-dimension p surfaces

For a *d*-polyhedron *P*, let $f_k(P)$ be the number of *k*-faces of *P* (i.e. faces of dimension *k*). Let $Z_{\sigma}(H)$ be the set of cells in $\mathcal{A}(H)$ whose relative interior has a non empty intersection with $\sigma \subseteq \mathbb{R}^d$.

We denote $z_k(\sigma, H)$ the $\sum_{C \in Z_{\sigma}(H)} f_k(closure(C))$. We set $n > 0, d > 0, 0 \le k \le d$, and by $z_k(n, d)$ we denote the maximum of $z_k(\sigma, H)$ over all σ algebraic surfaces of bounded degree δ and co-dimension p, and all sets of n hyperplanes. First we notice that a standard perturbation argument proves that the maximum of $z_k(n, d)$ is attained when the hyperplanes in H are in general position and σ is in general position with respect to H [Gru67]. Under the general position assumption, a k-face f in $\mathcal{A}(H)$ lies in exactly (d - k) hyperplanes and is part of the boundary of 2^{d-k} cells of $\mathcal{A}(H)$. More than one of those cell can lie on $Z_{\sigma}(H)$, thus the contribution of f to $z_k(\sigma, H)$ can be more than one.

We define a k-border as a pair (f, C), where f is a k-face and C a cell having f on its boundary. Thus $z_k(\sigma, H)$ counts all k-borders in $Z_{\sigma}(H)$ once. More generally, a (k, i)-border, $0 \le k \le i \le d$ is a pair of faces (f,g) of dimensions k and i respectively, such that $f \subset closure(g)$. Note that k-borders are (k, d)-borders.

We call an *i*-face popular if all the 2^{d-i} incident cells are in the zone $Z_{\sigma}(H)$. A (k, i)-border (f, g) is popular if g is a popular *i*-face.

Definition 1 $\tau_k^i(X, H)$ is the number of popular (k, i)-borders in the zone of $X \subseteq \mathbb{R}^d$ in the arrangement of H.

Note that $z_k(\sigma, H) = \tau_k^d(\sigma, H)$. So by estimating $\tau_k^d(\sigma, H)$ for each $k, 0 \le k \le d$ we find the total complexity of the zone. We obtain such bounds inductively estimating τ_k^i , for all $0 \le k \le i \le d$.

Lemma 2 1. For any subset $X \subset \mathbb{R}^d$ and $0 \leq k \leq d$

$$\tau_k^k(X,H) \le \binom{d}{k} \tau_d^d(X,H)$$

2. For an algebraic surface σ of co-dimension p and bounded degree,

$$\tau_k^k(\sigma, H) = O(n^{d-p})$$

Proof.

1. As noticed in [AS91] it suffices to associate any popular k-face with a popular cell and argue that each cell cannot be charged too many times. Pick up a point u in the interior of a cell of the arrangement. For any convex set C, not containing u, there exists one and only one point $v \in C$ such that $|uv| = \min_{q \in C} dist(u, q)$, where dist is the standard euclidean distance

in \mathbb{R}^d . Take now a popular k-face f and find its point v at minimum distance from u. We konw from Lemma (1) that there exists one cell in $Z_{\sigma}(H)$ incident to f, such that v is its point at minimum distance from u. We associate f with this cell. Now each popular k-face is associated with a cell with which shares its closest point to u. No cell in the zone can be charged more than $\binom{d}{k}$ times (that is when v is a vertex), if v is not a vertex there are even fewer possible k-flats incident on v.

2. It is enough to show that $\tau_d^d(\sigma, H) = O(n^{d-p})$ (i.e. σ meets $O(n^{d-p})$ cells of $\mathcal{A}(H)$). We prove this by induction on d. For d = p a co-dimension p surface is a set of points whose number depend on the degree δ . Therefore, from the definition of $Z_{\sigma}(H)$, the number of cells is O(1). Otherwise suppose inductively that, on each hyperplane $h \in H$, $\sigma \cap h$ meets $O(n^{d-1-p})$ cells in the arrangement induced on h by H. The surface σ can intersect the cell C in 2 cases: when a component of σ is fully contained in C and when σ crosses the boundary of C. The former case can happen only a constant times, the latter case is bounded by $O(nn^{d-1-p}) = O(n^{d-p})$. The number of cells in $Z_{\sigma}(H)$ is $O(n^{d-p})$.

The proof of lemma 2 (1) is a key change with respect to [AS91] since we do not have any extra correction term polynomial in n.

Now we proceed by induction on *i* to derive a recurrence for $\tau_k^i(\sigma, H)$, for $0 \le k < i$. Fix an hyperplane $h \in H$ and consider a popular (k, i)-border (f_0, g_0) in $Z_{\sigma}(H)$, with $f_0 \notin h$. When we remove h, g_0 becomes a possibly bigger *i*-face *g* which is also popular, moreover f_0 is a part of some *k*-face in *closure(g)*. So let (f, g) be a popular (k, i)-border in $Z_{\sigma}(H - \{h\})$. We consider what happens when *h* is reintroduced. Let C_l , for $l \in [1, \ldots, 2^{d-i}]$ be the cells of $Z_{\sigma}(H - \{h\})$ incident to *g*. The following cases may occur:

- 1. $h \cap g = \emptyset$, in this case g may or may not be popular in $Z_{\sigma}(H)$. In the first case (f,g) contributes one (k,i) border to the zone. In the second case (f,g) is not counted any more.
- 2. $h \cap g \neq \emptyset$ and $h \cap f = \emptyset$, again (f, g) contributes at most 1, namely (f, g^+) where g^+ is the portion of g on the same side of h as f.
- 3. $h \cap g \neq \emptyset$ and $h \cap f \neq \emptyset$, in this case we get 2 (k, i)-borders: $(f \cap h^+, g \cap h^+)$ and $(f \cap h^-, g \cap h^-)$. Only if both of them are popular our count will increase, i.e., let $C_l^+ = C_l \cap h^+$ and $C_l^- = C_l \cap h^-$, if σ meets all these 2^{d-i+1} cells. Notice that all these cells are adjacent to $g \cap h$ which is an (i-1)-face in $\mathcal{A}(H)$. The count will increase then if $g \cap h$ is a popular (i-1)-face in $\mathcal{Z}_{\sigma}(H)$ and $(f \cap h, g \cap h)$ is a popular (k-1, i-1)-border in $Z_{\sigma}(H)$.

To summarize: the number of popular (k, i)-borders not contained in h is bounded by $\tau_k^i(\sigma, H - \{h\}) + \rho_h$, where ρ_h is the number of popular (k - 1, i - 1)-borders (f', g') with $g' \subset h$. Summing over all $h \in H$ we have that every popular (k, i)-border is counted exactly n - d + k times. We obtain an equation:

$$(n-d+k)\tau_k^i(\sigma,H) \le \sum_{h\in H} \tau_k^i(\sigma,H-\{h\}) + (d-i+1)\tau_{k-1}^{i-1}(\sigma,H)$$

Where the factor (d-(i-1)) comes from the fact that we charge a popular (i-1)-face d-(i-1) times, i.e any time h is an hyperplane containing it. Maximizing over all arrangements we get:

$$\tau_k^k(n,d) = O(n^{d-p}) \tag{1}$$

$$\tau_k^i(n,d) \le \frac{n}{n-d+k} \tau(n-1,d) + \frac{d-i+1}{n-d+k} \tau_{k-1}^{i-1}(n,d)$$
(2)

Note that this is an induction in n, i and k, not in d. We assume that $n \ge d - k$ and define $\tau_k^i(n,d) = \binom{n}{d-k} \psi_k^i(n,d)$. Equations (1) and (2) become:

$$\psi_k^k(n,d) = O(n^{k-p}) \tag{3}$$

$$\psi_k^i(n,d) \le \psi_k^i(n-1,d) + \frac{d-i+1}{d-k+1} \psi_{k-1}^{i-1}(n,d), \quad 1 \le k < i \le d$$
(4)

Equation (4) can be rewritten also in the following form:

$$\psi_{k}^{i}(n,d) \leq \psi_{k}^{i}(n-1,d) + \frac{c}{n} \frac{\tau_{k-1}^{i-1}(n,d)}{n^{d-k}}$$
(5)

The base case i = 0, k = 0 is dealt with by lemma 2. Similarly the case i = 1, k = 0, 1 are dealt with by lemma 2 and by the observation that $\tau_0^i(n, d) \leq 2\tau_1^i(n, d)$, that is, vertices can be charged to the edges.

Let us suppose now that i < p. In this case the number of popular *i*-faces is $\tau_i^i(n, d) = O(n^{d-p})$. The maximum complexity of an *i*-polytope is $O(n^{\lfloor i/2 \rfloor}) \leq O(n^{\lfloor p/2 \rfloor})$. Therefore for every $k \leq i$ $\tau_k^i(n, d) = O(n^{d-\lceil p/2 \rceil})$.

Now we solve the recurrence for i = p and $k = \lfloor p/2 \rfloor$. When we have this bound, it can be extended to every k for $0 \le k \le p$, using the fact, consequences of the Dehn-Sommerville relations, that the number of $\lfloor p/2 \rfloor$ -faces bounds the number of faces of any dimension [Ede87,AMS91].

Consider equation (5). We estimate up to a constant factor $\tau_{k-1}^{i-1}(n,d) \leq n^{\lfloor (i-1)/2 \rfloor} \tau_i^i(n,d) \leq n^{\lfloor (p-1)/2 \rfloor} n^{d-p}$. So the fraction in equation (5) becomes $n^{\lfloor (p-1)/2 \rfloor} - \lfloor p/2 \rfloor$, which is constant for p odd, and n^{-1} for p even. Therefore the additive term in the equation becomes 1/n or $1/n^2$. We obtain $\psi_k^i(n,d) = \log n$ or $\psi_k^i(n,d) = O(1)$. Easily follows that $\tau_k^i(n,d) = O(n^{d-k}\psi_k^i(n,d)) = O(n^{d-k}\psi_k^i(n,d))$.

For i > p we solve the recurrence (5) assuming $k \ge \lceil p/2 \rceil$. Assume that the bound holds inductively, and p is even, so $\psi_{k-1}^{i-1}(n,d) = O(n^{k-1-\lceil p/2 \rceil})$. Inserting the bound in equation (4) we obtain $\psi_k^i(n,d) = O(n^{k-\lceil p/2 \rceil})$ which gives the final bound $\tau_k^i(n,d) = O(n^{d-\lceil p/2 \rceil})$. For $k < \lceil p/2 \rceil$ we have $k < \lceil p/2 \rceil < \lceil i/2 \rceil$. From the Dehn-Sommerville equations we know that for all k's $\tau_k^i(n,d) = O(\tau_{\lceil i/2 \rceil}^i(n,d))$. For p odd a similar argument holds. We summarize the above discussion with the following theorem.

Theorem 1 The complexity of the zone $Z_{\sigma}(H)$ of an algebraic surface σ of bounded degree and codimension p in the arrangement $\mathcal{A}(H)$ of n hyperplanes is $O(n^{d-\lceil p/2 \rceil})$ for p even and $O(n^{d-\lceil p/2 \rceil} \log n)$ for p odd.

This theorem includes the result of Aronov and Sharir for p = 1. The bounds are almost tight except for the logarithmic factor for odd co-dimension.

5 Acknowledgments

I want to thank Boris Aronov for helpful discussions.

References

- [AMS91] B. Aronov, J. Matoušek, and M. Sharir. On the sum of squares of cell complexities in hyperplane arrangements. To appear in the Proceedings of the 7th ACM Symposium on Computational Geometry, 1991.
- [AS91] B. Aronov and M. Sharir. On the zone of a surface in an hyperplane arrangement. To appear in the Proceedings of the 1991 Workshop on Algorithms and Data Structures, 1991.
- [Cla87] K.L Clarkson. New applications of random sampling in computational geometry. Discrete Computational Geometry, pages 195-222, 1987.
- [Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1987.
- [Gru67] B. Grunbaum. Convex Polytopes. Wiley, New York, 1967. Umlaut on u.