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Abstract

A t-spanner of a graph is a subgraph in which cv-
ery two nodes that were connected by an edge in the
original graph arc connected by a path of at most ¢
edges in the subgraph. We present t-spanners of min-
imum average degree for infinite 2-dimensional grids.
The minimality of degree is shown by an interesting
connection with polyomino tiling.

1 Introduction

It is often the case in computational geometry that
geometric problems are solved by first transforming
the problem to a graph-theory problem, and then
solving this problem. In this paper, we outline a prob-
lem’s solution which runs counter to this trend: we
solve a networking (graph) problem by transforming
it to a geometric problem.

Many network topologies have been proposed for
parallel computers; foremost among these are the
pyramid, hypercube, and the multidimensional grid
(mesh).  One drawback to these structures is their
relatively high degree at each vertex. In this pa-
per, we consider spanners as a method of dealing
with this problem. Spanners are substructures which
have the property that the edges removed from the
original structures are effectively replaced by a short
path in the substructure. This is distinct from a re-
lated technique in the literature, graph embedding,
in which a“logical network” is mapped onto another
“host network”. (See, for example, [1].) We are in-
terested in the particular case of finding spanners for
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2-dimensional grids. Spanners of pyramids, hyper-
cubes, and multidimensional grids have been studied
elsewhere [5] [7] [8].

A network is represented by a connected simple
graph G = (V, E). A spanning subgraph S = (V,E")
of G is a t-spanner if for any edge (a,b) of G there is
a path from a to b in S with ¢ or fewer edges [6]. The
value t is known as dilation or stretch-factor. Our goal
i8 to construct, for the two-dimensional grid, small
dilation spanners with low average degree. As the
grid is bipartite, we need consider only odd values of
t. The average degree of the spanner S is denoted §.

Another important measure of the quality of a
spanner is congestion, that is, the amount of traf-
fic expected across edges of S. Given an assignment
of paths in S corresponding to edges in G, the con-
gestion of an edge under that assignment in S is the
number of paths that use that edge (including the
edge itself). The congestion of S, denoted «, is the
maximum congestion of any edge in S, where 7 is
minimized over all assignments of paths. For exam-
ple, removing a single edge from any complete graph
K, on n > 3 vertices gives a 2-spanner of K, with
y=2.

Peleg and Schiffer [6] investigated the existence
and constructability of sparse spanners for various
classes of graphs. In particular, they show that find-
ing a minimum-edge 2-spanner in a given graph is
NP-hard. Richards and Liestman [8] began the in-
vestigation of degree-constrained spanners by study-
ing these substructures in pyramids. Liestman and
Shermer [5] continued this study for hypercubes and
mulitdimensional grids ([5] contains the full €exposi-
tion of the results reported here). Peleg and Ullman
[7] constructed a 3-spanner of the d-cube with aver-
age degree 12. Cai [2] has characterized those graphs
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Figure 1: A finite grid spanner and its skeleton

that have 2-spanners that are trees.

We show here how to construct ¢-spanners of infi-
nite 2-dimensional grids with minimum average de-
gree. This construction yields spanners with conges-
tion t, which we show to be optimal for t = 3(mod 4).
By appropriate truncation of our infinite spanners, we
can construct spanners for finite 2-dimensional grids
with average degree and congestion approximating
that of the infinite construction.

2 Lower Bound on 4(S5)

Throughout this section, we consider a t-spanner S
of the two-dimensional grid G3).

We define the dual D(3) of G(3) to be a graph with
one vertex per unit square of G(3), with an edge be-
tween vertices of D(z) corresponding to squares of
G(2) that share an edge. In this dual mapping, each
edge e of G(3) has a corresponding dual edge D(e)
in D(z); D(e) is that edge of D(3) which is between
the vertices corresponding to the two squares of G 3)
sharing the edge e.

We define the skeleton SK(S) of the spanner S to
be a graph with the vertex-set of D(3), and containing
all dual edges D(e) such that e is not in S. A finite
grid spanner and its skeleton are shown in Figure 1.

Each connected component of the skeleton SK(S)
givesrise to a tileof S. A tile T is the collection of grid
squares corresponding to the vertices of a component
SK; of SK(S); SK; is called the skeleton of tile T', and
denoted SK(T'). Each tile is therefore a polyomino
(connected set of grid squares). Tiling properties of
polyominoes have been well studied (c.g., [3] [4]). We
let Ny denote the number of squares in 7', V3 denote

Figure 2: A tile, its skeleton, and induced subspanner

the vertices of the grid which are on T, and St denote
the subgraph of S induced by V. A tile, its skeleton,
and its induced subgraph are shown in Figure 2. No
tile skeleton will contain a cycle; such a cycle would
imply a disconnected spanner.

Lemma 2.1 Every lile T of a t-spanner S of a 2-
dimensional grid has

Np <A4|(t+1)/4]|(t +3)/4) + 1.

Tiles realizing this bound consist of a centroid unit
square surrounded by four |(¢ + 1)/4] by (¢ + 3)/4])
rectangles.

Lemma 2.2 For any tile T in a

§(SK(T)) = 2 — 2/Nr.

spanncr,

Corollary 2.2a For any spanner S of G with all
tiles having N squares, §(S) =2+ 2/N.

An interesting particular case of the previous corol-
lary is a monohedral spanner: a spanner with all tiles
identical. We will use monohedral spanners in our
constructions of Section 3.

We can combine Lemmas 2.1 and 2.2 to get:

Corollary 2.2b For any tile T in a t-spanner,

2
4t +1)/4)[(t +3)/4] + 1

5(SK(T)) < 2 —

As there is some 7' with §(SK (7)) at least as
large as 6(SNK'(S)), the above bound also holds for
6(SK(S)). This gives the following lower bound on
the average degree of any t-spanner of G(z):

Theorem 2.3 For any t-spanner S of G(z),
2
A(t+ D)/ [(E+ 3) /4] + U

8(S) > 2+
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Figure 3: The tiling for p = ¢

3 4-Optimal ¢t-Spanners

We now show that the lower bound of Theorem 2.3
can be realized.

Theorem 3.1 For any odd t > 1, there exist -
spanners of Gy with

2
AT DA A[ T T

PROOF Ift =1, then G(2) is itself the spanner, with
4(S) = 4. We henceforth consider only odd ¢ > 3.

Let p = [(t+1)/4] and q = |(t + 3)/4]. Either
P=qorp=gq~—1. Inthe former case, t = 1 (mod 4)
and in the latter case, t = 3 (mod 4). By Corollary
2.2a, a tiling with all tiles having 4pq + 1 squares will
give us the desired average degree. Consider a tile T
with N7 = 4pq + 1; such a tile consists of a centroid
square connected to four p by ¢ rectangles.

If p = g, then (barring enantiomorphs) the tile is
of the shape shown shaded in Figure 3. The interiors
of the large squares can be divided in any manner
that creates no cycles in the skeleton and does not
violate the dilation constraint; one such scheme is
shown in Figure 4. We will later consider how to
divide these squares to reduce congestion. A spanner
of the desired average degree is constructed by tiling
the plane using these tiles. Such a tiling, in fact the
only one, is shown in Figure 3.

If p = g — 1, then there are six possible general tile
shapes which are shown in Figure 5. The tile shapes
of Figures 5c, d, e, and f always admit monohedral
tilings of the plane; any of these tilings satisfies the
theorem. For the special case when ¢ = 5, there are
three extra tile shapes, giving the nine tiles shown in
Figure 6. Of these tiles, all but the large cross tile
(Figure 6a) admit monohedral tilings. (]

6(S) =2

il

Figure 4: A tile with entire subspanner shown

L L

Figure 5: Possible tile shapes if p = g—1

We call any spanner of G(2) which satisfies the previ-
ous theorem a §-optimal spanner and any tile used in
the construction in the proof a 6-optimal tile. Note
that §-optimal spanncrs may contain tiles which are

not §-optimal tiles, but only if such tiles are “in-
finitely outnumbered” by 6-optimal tiles.

4 Congestion
Spanners

on 6-Optimal

We now investigate congestion on 6-optimal span-
ners. The following two lemmas provide a quick vi-
sual method for determining the congestion on a §-
optimal tile.

Lemma 4.1 For any internal edge e of a tile of any
spanner S of a 2-dimensional grid G, the congestion
on e is equal to one plus the distance in SK(S) of the
endpoints of D(e).
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Figure 7: Minimum congestion on border edges

Given a é-optimal tile T', we let zr denote the cen-
troid vertex of SK(T'). (The skeleton of any such tile
must have exactly one centroid vertex.) For any bor-
der edge e on any tile T', we let q(e) denote the vertex
of SK(T') dual to the square of T adjacent to e.

Lemma 4.2 For any border edge e on any 6-optimal
tile T, missing edges on T contribute congestion to e
equal to the distance between q(e) and zp in SK(T).

Using the previous lemma, we can label the bor-
der edges of the §-optimal tile shapes, with the least
possible congestion that missing edges on the tile
could contribute to that edge. Figure 7 shows this
labelling for the 19-spanner tile shape. In general,
this minimum contributed congestion will vary be-
tween |(t + 1)/4] and (¢t — 1)/2.

Lemma 4.3 For every t = 3 (mod 4), t > 3, any
6-optimal t-spanner of G(3) must have vy > t.

PROOF Consider a é-optimal tile in the middle
of a large area of é-optimal tiles in the spanner; the
spanner locally looks the tiling in Figure 3.
border edges with minimum contributed congestion

Hence,

of (t — 1)/2 from two different tiles coincide. There-
fore, the spanner has congestion at least ¢. o

We believe that the ¥ > ¢ bound holds for ¢t =
1 (mod 4) as well, except for the special case t =
9. Due to the large number of tiles and tilings, we
have not been able to obtain a proof. We are able to
produce é-optimal ¢-spanncrs with y = ¢:

Lemma 4.4 For every odd t > |, there exist é-
optimal t-spanners of G(a) with vy = 1.

PROOF  We use the tilings given in the proof of
Theorem 3.1, with tiles divided as in Figure 4. In
the tiling, border edges with congestion (¢t — 1)/2
from each of two tiles coincide, giving a congestion
of t on each such edge; this is the maximum pos-
sible on a border edge. By Lemma 4.1, the inter-
nal edges will have congestion at most 2p, where
p=[(t+1)/4] <(t+1)/4; Thus the maximum con-
gestion is found on the external edges with congestion
t. (m]

We can also construct a y = 7 é-optimal 9-spanner
of (/(2); a simple probabilistic argument. shows that
this is the smallest v possible for such a spanner.
However, since the tiling we usc exists only for t = 9
and not for other t = 1 (inod 4), we believe this (-
spanner with v < t to be a special case.
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