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Abstract

Given a sct S of n points in R4, we show a new
method for constructing a graph G(S) that approxi-
mates the complete Euclidean graph in the following
way: for any two points P,q in S, there is a path
in G(S) between p and ¢ with length bounded by
a constant times the Euclidean distance dist(p, q).
Furthermore, the graph will have only O(n) edges.
In the plane, for any integer k > 6, the path length

constant will be T——ziir{." and the number of edges

will be at most kn. We give an algorithm for con-
structing Gi(S) with running time O(n(log n)d"’) in
dimension d > 2.

1 Introduction

Given a set S of n points in the plane, suppose we
wish to design a network in which the distances be-
tween all pairs of points are small. The complete
Buclidean graph minimizes distances for all pairs,
but requires O(n2) edges. For some applications,
it might be acceptable to increase the distances be-
tween points by a constant factor in order to reduce
the number of edges to O(n).

Let G = (V, E) be an undirected graph with real
positive edge weights. For two vertices v,w € V,
let d¢; (v, w) denote the length of the shortest path
between v and w in G. We say that a subgraph
G =(V,E") of Gis a l-approzimation for G of spar-
sily ¢ iff |E'] < ¢|V] and for each v,w € V we have
dgi(v,w) < t-dg(v, w), where t > lis some real num-
ber. Our interest here is the case when G is the com-
plete graph on a set S of n points in R? and where
the weight of edge (p, q) is equal to the Euclidean
distance between p and q. Graphs that approximate
the complete Euclidean graph have applications in
network design and motion planning problems, es-
pecially for algorithins that can utilize approximate
shortest paths.

*This work was supported by an NSF Presidential Young
Investigator Grant CCR-90-58810.

Chew introduced the notion of graphs that approx-
imate the complete Euclidean graph and discussed
some of their applications in [1]. He also showed
that the Delaunay triangulation of S in the L; met-
ricisa \/ﬁ-approximation of the complete Euclidean
graph. Since then, quite a few other types of approxi-
mating graphs have been discovered, some with lower
constants, and others that have various additional
properties. Dobkin, Friedman and Supowit showed

that the usual (L, metric) Delaunay triangulation

also -’-fé)@w ~ 5.08-approximates the complete Eu-

clidean graph [2]. The constant was later improved
to 37:%%'{' ~ 2.42 by Keil and Gutwin [5). Elsewhere

[4], Keil showed how to construct a graph G(S) for
any integer k > 6, that W_‘—,_—lTn—,{—_-approximates
the complete Euclidean graph. By increasing k the
approximation can be made arbitrarily close, but
for any fixed &, G(S) will have sparsity k, i.e. it
will have linearly many edges. Subgraphs that are
t-approximations of general graphs (not necessarily
the complete Euclidean graph) were studied by Pe-
leg and Schaffer in [7], where they were referred to-
as t-spanners.

The purpose of this paper is to describe a method
of constructing linear-size graphs that approximate
the complete Euclidean graph of a point set in R9.
This will be done by modifying the technique of Keil
[4]. Along the way, we will also show how to improve
the constants in the planar case. For d 2> 2 dimen-
sions, we give an algorithm for constructing approx-
imating graphs that runs in time O(n(logn)d' ).

2 The Planar Case

We first describe the construction in the planar case.
Our construction is inspired by the theta-graph con-
struction of Keil [4].

Given a set S of n points in R?, and given any
integer k > 2, the graph G (S) is defined as follows.
For any p € S, let Cone(p,i), 1 < i < k, be the
cone with apex p bounded by the two rays from p in
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the directions 5';,?2 and ’—,zcl Then the cone axis
Azis(p,1) is the ray -ﬂiih, which bisects the cone.
Let Nigh(p,i) be the vertex in Cone(p,t) whose or-
thogonal projection onto Azis(p,i) is nearest p (if
there is such a wvertex). The vertex set of Gr(S) s
S, and the edge set is Upes Ulsisk (p, Nigh(p,1)).

Theorem 1 Given a set S of n points in the plane,
and given an inieger k > 6, the graph G (S) defined
above has sparsity 'k and is a T:TéT;-{--approzzmation
of the complete Buclidean graph on S.

Proof: Gi(S) will have sparsity k because at each
vertex p, we add at most 1 edge for each of the k
cones emanating from p.

For any two vertices p and ¢, we now show how to

construct a path P in Gi(S) of the required length. «
(P may not be the shortest p-g path in Gir(S).)P;

Starting at p, we will add edges one at a time to
the path. Let the vertices on the path be m, py, ...,
with po = p. From p;, the next edge on the path will
be the edge p;q, if it is present in the graph. Other-
wise, choose j such that Cone(p;, j) contains ¢, and
take the edge to piy1 = Nigh(p;,j). Let r be the
number of edges in the constructed path. Let ¢ be
the edge from p;_; to p;, call its length 6;, and let
li be the Euclidean distance from p; to q. Below, we
will show that

(+%)

6 + < li_y + 26; sin ¢
holds for each edge along the path. Ilere, ¢ = ¥ and
2¢ corresponds to 6 in [4]. Rearranging and summing
over all r edges in the path we have

(1 - 2sin¢)i6,- S Xr:(l,'_l - 1.').
i=1 i=1

The right hand side is a telescoping sum, and I, = 0
and ly = dist(p, q), so we get

r .
Z‘si < dzst(p., q) ,
= 1—2sing

which is the desired bound on the length of a p-¢
path.

It remains to show that (+x) holds at each edge
along the path. Edge e; connects pi-1 and p;. If
Pi =¢q,thenl; =0, & = l;_q, so (**) holds. Oth-
erwise, we distinguish three different configurations
for the points p;_1, p; and ¢. Suppose the rays p;_ip;
and p;_1q make angles o and 8 with the cone’s axis,
where a < ¢ and B < ¢. Case 1 occurs when B < a,
case 2 is when # > a and p; and ¢ are on the same
side of the cone axis, and case 3 when 8 > a and p;
and q are on opposite sides of the cone axis.

Figure 2: Cases 2 and 3.

In case 1 (see Figure 1), we know that since p;_
wasn’t adjacent to ¢, ¢ must lic to the right of the
vertical line through p;. Let r be the mirror image of
pi across the cone axis. Then the segment p;_;r has
length &; and the segment p;r has length 26; sin «,
which is < 26;sin ¢, since 0 < « < ¢. Thus, showing
(##) amounts to showing that in Figure 1, the sum of
the lengths of the two thick solid lines is no greater
than the sum of the two thin solid lies. This is
certainly the case, by two applications of the triangle
inequality.

For cases 2 and 3, we will again argue geometri-
cally that (¥x) holds. Let Cy be the circle through
pi centered at p;_;. Let  be thie intersection of (3
with the ray p;_;q, and let s be the mirror image of
r across the cone axis (sce Figure 2). To show (#+),
it suffices to show that

dist(pi_y, pi) + dist(pi, q) < dist(pi_y, q) + dist(r, ),

since dist(p;_1,p;) = &, dist(pi,q) = |,
dist(pi_1,q) = l;_y, and dist(r,s) < 26;sin¢. The
last fact holds because 0 < 8 < 4.

Since dist(pi_1,p;) = dist(pi_,,q) — dist(r,q), we
must show

dist(pi,q) < dist(r,q) + dist(r, s).

We can use the triangle incquality to reduce the right
hand side to dist(s,q). To see that dist(pi,q) <



dist(yq, s), we show that s is outside the circle € cen-
tered at ¢ passing through p;. € and Cpy intersect
at two points that are mirror images across the line
Pi—19. Since one of these points is p;, and s is farther
(along Cy) from the line p;_,q, s must be outside of
C. Hence we have shown (*+) in all 3 cases, and
completed the proof of the theorem.
"

3 d-Dimensional Case

In d > 2 dimensions, we need to generalize the idea
of choosing neighbors from each cone surrounding a
vertex p. The most straightforward generalization is
to choose a set of (overlapping) circular cones that
cover space. All cones should have the same angle
¢ from axis to boundary. ‘This can be done with a
number of cones that depends only on d and ¢. (¢
corresponds to I in the planar casc.) Fejes Téth sur-
veys the techniques for sphere packing and covering
in [3], and Rogers discusses the d-dimensional spherc
covering problem in [8].

To construct an approximating graph, we choose
neighbors for vertex p from the cones centered at p.
In cach cone, we again choose the point whose projec-
tion to the cone axis is nearest to p. As in Theorem
L, the resulting graph is a T:z-‘m-approximation of
the d-dimensional complete Euclidean graph.

llowever, the computation of neighbors is difficult
to do efficiently with circular cones. To enable us to
get an eflicient algorithm in the next section, we will
use a sunplicial cone covering instead. A simplicial
cone in R* is the convex hull of d rays sharing a
common endpoint. A set of simplicial cones sharing
an apex is a covering if their union covers all of space
(the cones may overlap). For each cone, there should
be a canonical dircction to use as an axis, with the
condition that from the apex, every point in the cone
makes an angle < ¢ with the axis. The same set of
cones is translated to each vertex for use in choosing
its neighbors.

The crucial point is that the number of cones re-
quired in such a covering depends only on d and ¢,
and so will be a constant Cy 4 with respect to our
graph construction algorithm. There are a number
of ways to construct such a simplicial cone cover-
ing and associated set of directions at each vertex
p. For instance, one can cover the surface of the
(d — 1)-sphere with appropriate spherical caps and
then compute the Delaunay triangulation of the cen-
ters of the caps. Together with p, the resulting tri-
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angles define a sct of cones. The canonical directions
go from p through the Delaunay circumcenters.

The edge set of the approximating graph G4(S)
will be Up U; (p, Nigh(p, i)). Here p ranges over all
points in S, and 1 < i < Cyq4. Nigh(p,i) is the
vertex in the ith simplicial cone whose projection to
the ith canonical direction is nearest p.

Theorem 2 Given a set S of n points in R4, and
given any ¢ > %, the graph G4(S) is ¢ —i—-
approzimation of the d-dimensional complete Eu-
clidean graph on S. G4(S) will have sparsity Cs,4,
which is a constant, assuming ¢ and d are fized.

Proof: The sparsity of G4(S) will be Cy 4, since
we add at most Cy 4 edges around each vertex p.
The proof of the path length bound is exactly the
same as that in the planar case. We construct a path
Po, P1, - . ., by connecting p;_, to p;, the vertex in the
cone of ¢ with projection closest to p;_;. At each
edge pi_1p; in the path from p to g, we just analyze
what happens in the plane defined by p;_;, p; and
q, where the cone axis is projected perpendicularly
to this plane. The intersection of this plane with
the simplicial cone will be a (2-dimensional) cone in
which both boundary rays make an angle of less than
¢ with the (projected) axis. Hence a and 2 will both
be less than ¢, and the rest of the proof is the same
as before. |

4 "~ Subquadratic Algorithm

The above algorithm for constructing d-dimensional
approximating graphs can easily be implemented to
run in O(nz) time, but since the output size is only
O(n), perhaps we can do better. Keil gives an al-
gorithm for d = 2 that uses plane sweeps to get a
running time of O(nlogn) [4]. This algorithm can
be adapted to generate our approximating graphs in
the planar case in time O(nlog n), but it does not
appear to generalize to higher dimensions.

Instead, we will preprocess the point set S to build
a datastructure that allows efficient orthogonal range
queries and use the results of these queries to de-
cide which edges to use. We illustrate the tech-
nique in the planar case first. The algorithm pro-
ceeds in k (=%) phases. In the ith phase, we will
determine Nigh(p,i) for all p € S, by performing
a plane sweep in the direction &}91 Note that
if ¢ is in Cone(p, i), then p will be in the symmet-
ric cone (call it Cone’(q,i)) with apex ¢ (see Fig-
ure 3). As the sweepline moves, we maintain the
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| sweep fine L -'¢J 7r/7 7r/8 | 1rj9 | 7r/10 | .=/15 | 7r/2(f|
l — [ Keils method T — | — [B8I1] 452] 107 ] 156
“Modification || 7.56 j"4.2,6. 317 | 262 | 171 1.40

Figure 3: Howto find dll'psuch'that g¢'is in‘the ¢one
anchored atp.

invariant that for all ipoints p behind the sweepline,
Nigh(p,) has been computed if Nigh(p,1) ‘is also
behind the sweepline. When the sweepline ‘teackes
a point ¢, we -query the data structure ‘to find ‘out
which points are in Cone'(g,). For each such point
p, let Nigh(p,i) = ¢, and remove p from ‘the ‘dsta
structure. In order to use orthogonal range ‘queries,

we maust use an affine transformation ‘on ‘the ‘coordi-

nates so that the query cones become quadrants.

In d dimensions, we need one hyperplane sweep for
each of the Cy 4 canonical directions. The data struc-
ture to be used in the plane sweeps uses range trees
and priority search trees, both described in the book
by Mehlhorn {6]. We need d — 2 levels of range trees,
plus a level of priotity search trees to handle the last
2 dimensions. Before each sweep, we must apply an
appropriate affine transformation to the coordinates
so that the (transformed) hyperplanes bounding the
simplicial cone queries will be orthogonal. The total
preprocessmg time to build the data structure will be

O(n(logn)*~"), and it will require O(n(logn)?~')
space. The total time for all C¢ 4 sweeps, eachi with
n queries, will be O(n(logn)®").

5 Remarks and Conclusion

In the planar case, some improvement can be made
on the constants. In particular, when k is odd, there
1s an asymmetry between the cones at points p and ¢
that we can take advantage of by growing paths from
both ends. Interestingly, this asymmetry allows us
to prove a bound near 10 on the path lengths even
for the case k = 5. For even k, similar improvements

“vaties ‘with ‘¢, for i’fhe "two methods.

(2] D.P. Dobkin, S.J. Friedinin

Flgixre 4: Dependehce of’ pat.h Tength constant on ¢
“for the planar case.

can be made by altering the’ apcrtures ‘of some cones

‘at each’ point. ‘The details are omitted here due to
‘lack of space.

“We have‘shown ‘an’ lmprovement to Keil’s tech-

‘nique for constmct"mg t?]eta-graphs as approxlma-
‘tions of the complete gx'aph ‘and ‘we have shown
“how to “generalize our techmque to higher dimeén-

sions. ‘Figure ‘4 'shows how the path Tength constant
“The 0 of [4]
corresponds to 24. In hlgﬁer dimensioiis, the path

:'Iength constant has'the same dependence on’g, but

the number of edgeq will increase.
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