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Every Arrangement Extends to a Spread

Jacob E. Goodman?
Richard Pollack!
Rephacl Wenger?

and Tudor Zamnfirescu®

An arrangement of pseudolines in the Euclidean plane E? is a finite famnily of simple curves in E* such
that every two curves interseet at precisely one point, at which they cross. A spread of pseudolines in E? is
an infinite funily of simple closed curves in E2 such that:

1. every Lwo curves interseet at preciscly one point, at which they cross;

2. there is a bijection L from the unit circle (7 to the family of curves sucli that L(p) is a continuous
function (in the Hausdorfl metric) of p € €.

We prove the following conjecture of Grinbaum [1]:
Theorem 1 Fvery arrangement of pseudolines in E* may be embedded in a spread of pseudolines.

Using a stereographic projection, the Euclidean plane can easily be mapped to the interior of a disk, with
pscudolines in E? mapping to curves on the disk with endpoints on the circle bounding the disk. Stein [2]
proved that an arrangement of psceudolines in a disk is combinatorially equivalent to some arrangement of
pseudolines in a regular 2n-gon such that each face in the arrangement is a convex polygon. The pseudolines
have antipodal vertices on the 2n-gon as endpoints. ('I'wo points, p, p, on the boundary of the regular 2n-gon
are anlipodal if the line through p, p passes through the center of the polygon.) 'To prove Theorem 1 we need
only show that a finite family of psendolines on the 2n-gon can be extended to an infinite family where every
point p on the boundary of the 2n-gon lies on exactly one pscudoline L(p) and L(p) is a continuous function
of p.

Let Land I be two curves on the 2n-gon P with distinet antipodal endpoints p, p and p/, §', respectively.
Let ¢ bhe some point of intersection of { and I at which they cross. ¢ divides [ into two segments s with
cudpoints p, g and s with endpoints p,q. Similarly, ¢ divides I into two segments s and & with endpoints
Vg and pf g, respectively. We say that the q is a proper interscction pomnt of [ and I if | and I’ cross at ¢
and 5,8 s, 8" occur i clockwise order around ¢ if and only if p,p', p,p’ occur in clockwise order around P.

We can replace the global condition that curves intersect at precisely one point, at which they cross, by
the local condition that every point of intersection is proper.

Lemma 2 Two curves with antipodal endpoints on a 2n-gon mterscct al precisely one point, at which they
cross, if and only of cvery point of interseclion of the two curves is a propcr inlersection point.
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Now, we show how to extend an arrangement to a continous famnily of curves such that every intersection
is proper. Let £ be an arrangement of n pseudolines in a 2n-gon P with endpoints on opposing vertices.
The pseudolines in £ partition P into a 2-dimensional cell complex, consisting of a set of faces F (L), edges
E(L), and vertices V(L). We assume that the faces and edges do not contain their boundary points. Edges
of P are considered edges in E(L) and their endpoints are vertices in V(L).

Let A be the set of edges of P. For each edge a € A, there are two pseudolines, {,,l, € L, whose
endpoints match the endpoints of a. Let 7, = I, NI,. Each edge a € A also has an opposing edge @ € A,
where {l,,1,} = {ls,1;}.

For each a € A, we can define an ordering relation R,(L) on the faces, cdges and vertices of an arrange-
ment L as follows. Assume edge e and vertex v are on the boundary of face f. Let e <, f if the pseudoline
I € £ containing e strictly separates a from f. (We use < instead of <, whenever the subscript is clear from
the context.) Otherwise, let e > f. Let v < f if all the pseudolines [ € £ containing v strictly separate a
from f. Let v > f if all the pseudolines ! € £ containing v strictly separate @ from f. ¢ < f and e > [’ for
exactly one f and one f’. Similarly, v < f and v > f’ for exactly one f and one f’. It is casy to sce that

Lemma 3 R,(L) is a partial ordering on the faces, edgcs and vertices of L.

Let R3(L) be the transitive closure of Rq(L). Let G, be the set of all faces, edges and vertices which
have some relation in R} (L) to ¥,.

Ga={g9€ F(L)YUE(LYUV(L): g <75 0r g >, 0r g =1, in R(L)).

The lines I, and I partition I’ into four regions. G, consists of all the faces, edges and vertices lying in the
regions containing a and .

For each f € F, let B3(f) be the set of points on the boundary of f. B(f) - 1, — ¥ denotes the set of
points on the boundary of f which do not lie on line {, or line . For each « € A and f € F,, define:

Ba(f)={p€B(f):p€y€Cag<alf})

Note that if f is the face with a on its boundary, then B,(f) = a. (The closure of a set of points S is
denoted cl(S).) ‘

Let B7(f) and B} (f) be the endpoints of B,(f) with B; (f), Ba(f) and BF(f) occurring in clockwise
order around f.

If p lies on some edge or vertex g € G,, then therc is a unique f such that ¢ <, f. Thus there is a unique
face f such that p € B,(f). Let f} be the unique face where v, € Ba(f). Note that B, (f2) = v..

The following three lemmas are simple observations.

Lemma 4 For all faces f € G, — f2, the set of points B.(f) is an open, connecled curve.
Lemma 5 For every face f € G4, Ba(f) # 0.

Lemma 6 If a,b,d,b € A occur in clockwise order around P, then BZ(f), B, (f), Brf), B;(f) (not
necessarily distinct) occur in clockwise order f.

The next lemma is the crucial ingredient in our construction. It provides us with a construction of the
spread locally in each face so that the required global properties will be satisfied.

Lemma 7 There ezist a set of functions {. : a € A}, where ¢, maps Bu(f) lo Ba(f) for cach face
f€Ga— fi— f; such that:

1. ¢4 is continuous, one-to-one and onto;

2. s 1s the inverse of Yq;

3. for cvery distinct p,p’ € Ba([), the line segment from p lo Ya(p) does not cross the line segment from
/ /
P to $a(p');
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4. i p € Ba(f)NBy(f) and a,b,@,b occur in clockwise order around P, then P, Ya(f), ¥u(f) are distinct
poinis occurring in clockwise order around f.

Proof: We prove the lemma by constructing a family of functions {¥a : a € A} with the desired properties.
Assume we have defined ¢, for alla € A’ C A, where a € A’ implies @ € A’. We will show how to define v,
and ¢ for some a,a € A — {A'}.

Choose any face f € Ga— f3 — f3. Let A” = {a' € A’ : f € Gar}. Sort the edges in A” U {a} in clockwise
order around P. Let a— and a4 be the two edges of A” which immediately proceed and immediately follow
a in clockwise order around P. If A” = @, then a_ and a, are undefined.

Order the points in ¢/(Bq(f)) clockwise around f. Thus, p < p/, P, P’ € cl(By(f)), if travelling clockwise
on cl(Ba(f)) one first encounters p and then p'. Similarly, order the points in cl(Ba(f)) clockwise around f.

Let ¢~ = B (f) and q* = B (f). By Lemma6, ¢~ € cl(Ba_(f)) and ¢* € cl(Ba,(f)). Thus:

p- = lim ¥;'(q), and
g—q-

+

P Jim Yl (q)
is well-defined.

Assuine p~ € Ba(f). Again by Lemma 6, if p > p~, p€ Ba(f), then p € B,_(f). Define a function u~
from Ba(f) to Ba(f) where p=(p) = 4= (p) for all p > p~ and u=(p) = ¢~ for all p<p~. fp~ & Ba(f),
then let = (p) = ¢~ for all p € B,(f).

Similarly, if p* € Ba(f), then p*(p) = 9o_(p) for all p < p* and pt(p) = ¢+ for all p > p*. Otherwise
nt(p) = q* for all p € B,(f).

Clearly y= and pt are continous functions of p € B,(f). We also claim that p=(p) < pu*(p) for all
p € Ba(f) and that 4~ and put are monotonically decreasing functions of p, i.e., if p < P, then pu~(p) > u=(p')
and gt (p) > pt(p). First note that by Lemma 6, ¢* ¢ B;_ (f) and ¢~ ¢ B;, (f). Thus for all p € Bu(f),
1= (p) # g and pt(p) # ¢~ 1t follows that if 4~ (p) = ¢~ or pu*(p) = ¢+, then r=(p) < ut(p).

Assume p~(p) = Ya_(p) # 9~ and p*(p) = Ya,(p) # ¢*. By property 4 above, p, ¥,_(p) and Ya, ()
appear in clockwise order, 0 $a_(p) < va, (p).

By property 3 above, if p < p', p,p’ € Ba(f)N Ba_(/), $a_(p), ¥a_(¢') € Ba(f)N Ba_(f), then %,_(p) >
Ya_(p’). Thus p~(p) is a monotonically decreasing function of p. Similarly, p*(p) is a monotonically
increasing function of p. :

We now choose any continuous monotonically decreasing function of p lying between u~ and u* to be
Ya. Since 9, is monotonically decreasing, the linc segment from p to Ya(p) does not cross the line segment
from p' to ¥, (p') for any p,p' € Bu(f).

Assume p € Bo(f) N.By(f) and a,b,a,b occur in clockwise order around . By the choice of a4,
a,ay,b,a,ay,b oceur in clockwise order around I°. By property 4, p, %4, (), ¥4(f) occur clockwise around
P. By construction of ¢, p, $a(f), ¥a,(f) occur clockwise around P. Thus p, ¥a(f), ¥a,(f), ¥s(f) occur
in clockwise order around p, showing property 4 holds. If b,a,b,a occur in clockwise order around P, then
using a_ one can again show property 4 holds.

We repeat the above procedure for each face, defining Ya(p) for all p € Bu(f), f € Ga— f2 - fi. We then
let ¥a(p) = ¥ (p). va(p) is also a continuous monotonically decreasing function of p € Ba(f). Showing it
has all the propertics above is a simple exercise. o

Extend each functions 94 to Bs(f3), by letting ¢4(p) = 74, p € Ba(f2). Let ¢i(p) be 9, applied i times
to p. Note that ¢8(p) = p.

Let (p, ¥a(p), ¥2(p), - .., ¥*(p) = 74) be the polygonal curve consisting of line segments (yi(p), ¥it!(p)),
0 < i< k. Foreach p € a € A there is an antipodal point p € @ € A. Let L(p) be the union of the polygonal
curves (1, $a(p), ¥a(p), -, %5 (p) = 1a) and (5, %a(p), Y2(), .- ., ¥ (5) = 7a).

Proof of Theorem 1: S{L(p) : p € a € A} U L is a spread of pseudolines containing £. Let [ and I’ be
two pscudolines in 8. If 1 € £ and I' € L, then, by definition, they intersect in exactly one point.
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Assume I’ € L but | ¢ L. Since the endpoints of I and ! are antipodal, I and I’ must intersect in at
least one point ¢* € g* € G,. If there is a line segment in !’ connecting g C B,(f) to ¢’ C Ba(f), then
9<a f<ag' Ufg€G, intersects I between ¢* and a, then g < ¢* in R;. If g € G, intersects I’ between ¢*
and a, then g > ¢g* in R}. Thus g cannot be a vertex or edge lying on [, and so { intersects !’ only at ¢*.

Assume [ ¢ £ and I’ ¢ £. If | and I’ have endpoints in the same arc a € A, then { and I’ intersect at v,
where they cross. Let [ and I’ have endpoints in different arcs, ¢ and o', respectively, where a,a’,a, a’ occur
in clockwise order around P. We show that every point of intersection g* of l and !’ is proper. We consider
three cases, depending upon whether ¢* lies on a face, an edge or a vertex in the cell complex generated by
C.

First, assume ¢* lies in the interior of some face f € G, N G4. Let ¢ = Bu(f)N1l, ¢ € Ba(f) N,
¢’ = BaNIl', § = By NI'". We need to show that g, 4',q,q' occur in clockwisc order around f. It suffices to
show that any three of these points lie in proper order around f; the fourth point is antipodal to one of the
three and automatically falls into the proper position.

If ¢ € Bar(f) U Bar(f), then by Lemma 6, ¢’,q,q' must lie in clockwise order, proving ¢* is a proper
intersection point. If ¢ € Ba/(f). then by Lemma 7, property 4, q,4,%a(q) lie in clockwise order. Since the
line segment ¢',§’ does not interscct q,%q:(g), points ¢,¢’, ¢ must lic in clockwise order, again proving ¢* is
a proper intersection point. A similar argument holds if ¢ € Ba(f).

Next, assume ¢* lies on some edge e € G, NGy e lies on the boundary of two faces, f and f'. Without
loss of generality, assume ¢* € B,(f) N Bo/(f) and ¢* € Ba(J') N Ba(f'). By Lemma 7, property 4, ¥.(¢*),
Ya'(¢"), ¢* occur in clockwise order around f and Ya(q"), var(q*), ¢" occur in clockwise order around f'. It
follows that ¢* is a proper intersection point. :

Finally, assume ¢* lies on some vertex v € G, N Gq. Let I be some line in £ containing v. Without loss
of generality, assume !” separates a and a’ from @ and @. Assume some other line I’ € L passing through
q" separates a from a’. As argued above, I’ and I intersect I and I’ in exactly one point. Thus, I’ must
intersect {" only at ¢* and ¢" is a proper intersection point.

If no other line from £ passing through ¢* separates a from o', then ¢* € Bo(f) N Ba(f) and ¢* €
Ba(f') N Bar(f'). The argument is then the same as the case where q* lies on some edge ¢ € GG,.

We have shown that every point of intersection of I and I’ is proper. By Lemina 2, { and I intersect
precisely once. If follows that any two curves in S intersect precisely once, where they cross. For cach point p
on the boundary of P, there is a unique pseudoline L(p) with endpoint p. Since ¢4 is a continuously varying
function of p € a, L(p) is a continuously varying function of p € a. If p’ is an endpoint of a, then L(p)eL
is the limit of L(p) as p approaches p’. Thus S is a spread of pseudolines containing L. O
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