167

Optimal Algorithms for Determining Regularity in Pointsets
(extended abstract)

Andrew Kahng and Gabriel Robins

UCLA CS Dept., Los Angeles, CA 90024-1596

Abstract

The problem of discerning spatial regularity in images
yields elegant geometric problem formulations. Appli-
cations include texture analysis or finding rows of land-
mines, fenceposts, etc. We pose recognition of regular-
ity as the problem of finding all maximal equally spaced
collinear subsets of a pointset in E9, and give an opti-
mal ©(n?) time algorithm. We generalize this method
to yicld an optimal ©(n?) time algorithm for determin-
ing all maximal regular planar lattices within a pointset
in E4. Extensions to near-collinearity and near-equal
spacing are also possible within this framework.

1 Introduction

Given a finite pointset P C E¢ with all points distinct,
a subset S C P is collinear if |S| > 2 and all points
of S lie on a single line. A mazimal collinear subset
(MCS) of P is a collinear subset that is not properly
contained in any other collinear subset of P. The prob-
lem of finding an MCS in an image arises in line and
feature detection for computer vision, and instances can
occur in dimensions greater than two. Bucketing tech-
niques based on the Hough transform [2] [7] [1] or other
duality relations are often used for the MCS problem.
However, such methods do not give any insight into the
spalial regularity of collinear points.

To capture the notion of regularity in an image, we
call a subset S C P an equally spaced collinear subsect
if |S| > 3 and all the points of S are equally spaced
along the containing line. When given a pointset in
the plane, it is very natural to ask “what is its largest
equally-spaced collinear subset?”

Maximum Equally-Spaced Collinear Subset
(MESCS) Problem: For n points in E9, find the
largest equally spaced, collinear subset of points.

The MESCS problem has many practical applica-
tions, such as the examination of infrared ground
surveillance bitmaps to find equally spaced collinear

“hotspots” (rows of surface landmines, fenceposts in a
region perimeter, etc.) Often, we would like to exam-
ine all possible regularities in an image, and therefore
require a roster of all maximal equally spaced collinear
subsets, i.e., the complete order statistics of the input
with respect to the MESCS problem:

All Maximal Equally-Spaced Collinear Subsets
(AMESCS) Problem: For n points in E¢, find all
maximal equally spaced, collinear subsets of points.

Figure 1: Two maximal equally spaced collinear subsets.

Figure 1 illustrates a pointset and two of its max-
imal equally spaced collinear subsets. Existing algo-
rithms for line-finding do not extend well to encompass
the added difficulties of regularity detection or high-
dimensional data. For example, MCS in E? can be
solved in O(n?) time using a method in [3], but the ex-
ponential dependence on dimension is expensive, and it
is not clear that the method can satisfy the “equally
spaced” constraint within the same time complexity.
The work of Edelsbrunner and Guibas [4] also implies
an O(n?) time algorithm for MCS in two dimensions,
but this method does not generalize to higher dimen-
sions, nor does it seem applicable to the MESCS or the
AMESCS problem. Hough-style bucketing algorithms
also usually require time exponential in the dimension
d or in the granularity of the bucketing. In general,
methods in combinatorial geometry for finding spatial
regularity in images (e.g., for texture classification) are

168

dependent on low dimension, prescribed matching tem-
plates, or limits on the scale of features. In contrast, our
formulation of regularity detection and the algorithms
proposed below are quite general.

This note presents an optimal ©(n?) time algorithm
for solving the AMESCS problem for a pointset in ar-
bitrary dimension. We also generalize the “equally-
spaced” notion of regularity to two-dimensional lattices,
and give an optimal ©(n?) algorithm for determining all
maximal regularly-spaced planar sublattices within an
arbitrary pointset in E9.

2 Preliminaries

We establish a lower bound of Q(nlog n) for both MCS
and MESCS by reduction from the Element Unique-
ness problem (i.e., determining whether a given set
of integers contains duplicates), which is known to
require Q(nlogn) time in the standard comparison
model of computation [6], while a lower bound of Q(n?)
for AMESCS is established based on the output size.
Proofs of these results may be found in the full report
[5):

Theorem 1: MCS and MESCS both require at least
Q(nlogn) time.

Theorem 2: AMESCS requires at least (n?) time.

3 Solving AMESCS Optimally

A naive O(n?logn) algorithm for AMESCS iterates
through all (;) line segments induced by the pointset,

and determines how far each segment spacing can be
extended to either direction within the pointset. Ex-
tending a given solution in this manner costs O(logn)
time per added point (via binary search on a prepro-
cessed, sorted version of the input). Since no segment
can participate in more than one solution, we need to
examine each segment only once during this process,
hence the O(n? log n) bound.

This section gives an optimal algorithm for the
AMESCS problem in arbitrary dimension. The method
is based on a solution of the one-dimensional problem,
i.e., finding all maximal arithmetic progressions in a set
of numbers.

First, consider the very special one-dimensional vari-
ant which looks for an equally spaced triple of points,
ie., an arithmetic progression of length three (we can
show that this problem, as well as the decision ver-
sion of determining whether a given pointset contains a
collinear triplet, also has an Q(nlogn) lower bound).
We find all equally spaced triples as follows. First,

sort the input using O(n log n) time, yielding a list
Z1,Z2,...2,. Next, assume that the point at posi-
tion A = 1 in the sorted list is the leftmost point of
a triple. We maintain pointers (B and C) to points in
the sorted list, initially with B =i+ 1and C =i+ 2.
If (B— A) > (C - B), we increment C by 1, otherwise
we increment B by 1. Whenever the two differences are
equal, we record the equally spaced triple (A,B,C). Be-
cause pointers B and C simply march along the sorted
list, we find all equally spaced triples with z; as leftmost
component in linear time. Iterating over i = 1,2,...n
returns all equally spaced triples in O(n?) time, and
since inputs can have a quadratic number of triples,
this is asymptotically optimal. ,

The main idea is that the AMESCS problem can be
solved by overlapping these triples in order to determine
all maximal equally spaced chains. This is accomplished
by constructing a graph where for each reported equally
spaced triple [z;, z;, zi] we create the nodes < i,j >
and < j,k > and the edge (< ¢{,j >, < j,k >).
Each node in this graph has degree at most two, so
the edge set and vertex set both have size O(n?). Con-
nected components in this graph correspond to maximal
equally spaced collinear subsets in the original pointset,
and any linear-time algorithm to determine connected
components in this graph will yield all maximal equally
spaced subsets within O(n?) time.

Rotate P if needed so all z; are unique;
S = P sorted by z; coordinates;
G=(V,E)=(0,0);
For A=1ton-2do
B=A+1;
C=A+2
Until C > n do
If S4, Sg, Sc are collinear
and equally-spaced Then
V=VU{<A,B><B,C>}
E=FEuU{(<AB><B,C>}
If II(SB) - .’ﬂl(SA) > 2!1(50) - 31(53)
ThenC=C+1Else B=B+1;
Convert G to adjacency-list format (bucket sort);
Output the connected components of G.

Figure 2: Optimal O(n?) algorithm for the AMESCS problem.

To solve AMESCS in higher dimensions, we sort the
pointset by the first coordinate only, i.e., we project
onto the z; axis. Without loss of generality, we can as-
sume that no two points have the same z, coordinate
(E.g., rigidly rotate the pointset by a tiny angle 0 so
as to make all of the z; coordinates unique). We then
proceed to solve the 1-dimensional AMESCS problem
for the sorted, projected pointset, as outlined above.
Equally spaced triples in the pointset will correspond to
equally spaced triples in the projection. Although some

equally spaced triplets in the projection will not cor-
respond to actual equally spaced triplets, checking for
spurious triples requires only constant time per triple
in any fixed dimension. Since the number of equally

spaced triplets is bounded by ('2') in all dimensions, our

algorithm will run in time O(n?) for any fixed dimen-
sion. Our optimal AMESCS algorithm for an arbitrary
pointset P C E4 is formally given in Figure 2.

4 Generalization to Lattices

In this section, we generalize the notion of “equally-
spaced” regularity to two dimensions. First, we consider
lattices which are given by the intersection points of
two (different-sloped) families of equally-spaced parallel
lines. These families are formally specified by two linear
equations in general form with integer parameters j and
k, respectively; an added constraint ad # bc on the
constants in the linear equations insures that the two
families are not parallel.

Definition: A lattice L(zo,yo,a,b,c,d) for fixed real
absolute constants zq, yo, a, b, ¢, and d, ad # be, is a
pointset of the form {(z,y) | a(z — z0) + b(y — w) =
J and ¢(z — 20) + d(y — yo) = k for some integers j and
k}; the lattice point (z,y) has lattice coordinates (j, k).
Definition: Given a fixed lattice L(zo,y0,a,b,¢,d), a

set of points in the plane is a sublaltice of L if it is a
subset of L.

Next, we introduce the notion of lattice “cells”:

Definition: Four points of a given fixed lattice L define
a lattice cell if their lattice coordinates are of the form
{G. k), (G + 1,k), (G, k + 1), (G + 1,k + 1)}, and the cell
itsell has cell coordinates (j, k). Four points in a sublat-
tice L' C L constitute a cell in L' if they also constitute
acell in L.

Definition: Two cells p and ¢ of a given lattice are
neighbors (denoted p o q) if their respective cell coordi-
nates (ji, k1) and (jo, k2) satisfy |5y — j2|+ |k1 — k2| = 1.

We may define a graph structure over the cells in a
sublattice which is induced by the neighbor relation:

Definition: Given a fixed lattice L, the cell graph of a
sublattice L' C L is defined by G(L') = (V,E) = ({<
p> |pisacellin L'}, {(<p>,<q¢>)|pandq are
cells in L', po q}).

Definition: A set of points L’ in the plane is said to
be regularly-spaced with respect to some fixed lattice
L if (i) L' is a sublattice of L, (ii) every point in L’
belongs to some cell of L', and (iii) the cell graph of L’
is connected. A regularly-spaced subset is mazimal if
it is not a proper subset of any other regularly-spaced
subsct. Now we may state the following problems:

169

Maximum Regularly Spaced Subset (MRSS)
Problem: Given a planar pointset, find its largest
regularly-spaced subset.

Again, we want to find all order statistics:

All Maximal Regularly Spaced Subsets
(AMRSS) Problem: Given a pointset in E¢, find
all of its maximal regularly-spaced coplanar subsets.

Figure 3: A maximal regularly-spaced subset.

Figure 3 illustrates a pointset and one of its maximal
regularly-spaced subsets. It is easy to show a worst-case
upper bound of O(n3) on the output size of AMRSS,
and also a worst-case lower bound of Q(n3) for any
AMRSS algorithm [5):

Theorem 3: The sum of the sizes (i.e., number of
points) of all maximal regularly-spaced subsets embed-
ded in a given set of points is bounded by O(n3).

Theorem 4: The AMRSS problem requires at least
Q(n3) time to solve.

The remainder of this section develops an optimal
©(n3) time algorithm for the AMRSS problem. We be-
gin by considering the problem in two dimensions. As
in the discussion of AMESCS, we assume that the z,
coordinates of the input points are unique (again via

a rigid rotation if needed). Create the set T of all (2)

segments defined by pairs of input points, and sort T by
three keys: (a) segment length, (b) the slope of the seg-
ment, and (c) the z; coordinate of the (lower) left end-
point of the segment. This preprocessing/sorting phase
requires O(n?logn) time, and allows us to determine
the complete list of segments having a given length and
slope at logarithmic cost per inquiry; moreover, the re-
turned list (which is contiguous in the sorted list T') will
already be sorted by z; coordinates of the left endpoints
(i.e., the third sort key). Denote the z; coordinate of
the left endpoint of the segment ¢; by e(t;).

For each such segment t;, we extract the already-
sorted list Q of all O(n) segments having the same
length and slope, and with left endpoint z; coordinate
greater than or equal to e(t;) (i.e., @1 = t;). Analogous

170

to our solution for AMESCS, the main idea is to find
all pairs of adjacent congruent cells, and then overlap

these pairs to determine maximal connected groups of
cells.

A pair of adjacent congruent cells is determined by
three segments having the same length and slope, and
with left endpoints forming an equally-spaced triple.
Assume that t; is the leftmost segment A in a pair of
adjacent congruent cells, and maintain two pointers B
and C to segments in Q, with initially B = 2and C = 3.
If e(QB) — e(Qa) > e(Qc) — e(@B), we increment C by
1, otherwise we increment B by 1. Whenever the two
differences are equal, the corresponding triple of seg-
ments [A, B, C] defines a pair of adjacent congruent
cells, and we record this event. As in the AMESCS so-
lution, we use linear time to find all pairs of adjacent
congruent cells with ¢; as the leftmost of the three seg-

ments defining the pair of cells; iterating over all (';)

segments ¢; reports all pairs of adjacent congruent cells
within O(n®) time. Since inputs can have a cubic num-
ber of adjacent cell pairs, this is asymptotically optimal.

Finally, we solve the AMRSS problem by overlapping
the cell pairs to determine all maximal connected groups
of congruent cells. This is accomplished by constructing
a graph where for each reported pair of cells C; and
C; we create the nodes < i > and < j > and the
edge (< i >, < j >). Each node in this graph has
degree of at most four, so the edge set and vertex set
are both of size O(n3). Connected components in this
graph correspond to maximal regularly spaced subsets
in the original pointset, and we can now determine these
using any linear-time connected components algorithm
(after the edge list is converted into an adjacency list
representation as described above).

To solve AMRSS in higher dimensions, we project the
input onto the z; — z, plane, again assuming without
loss of generality that all z; and z; coordinates are
distinct, then solve the 2-dimensional AMRSS problem
for the projected pointset. Congruent adjacent cells will
correspond to congruent adjacent cells in the projection,
and checking for spurious cells in the projection again
requires only constant time per cell pair for any fixed
dimension. Since the number of congruent adjacent cells
is bounded by O(n®) in all dimensions, the algorithm
runs in time O(n3) for any fixed dimension. Thus, the
optimal algorithm for AMRSS of an arbitrary pointset
P € E¢ is given formally in Figure 4.

5 Conclusion

We address the problem of finding geometric regularity
in pointsets in arbitrary dimension. We prove lower
bounds and give an optimal algorithm for computing

all order statistics of equally-spaced collinear subsets.
This generalizes to yield a lower bound and an optimal
algorithm for determining all maximal regularly-spaced
planar subsets in all dimensions. Extensions to near-
equal spacing or near-collinearity are possible within
this framework.

Project P onto the z; — z; plane;
Rotate P if needed so all z;, z, are unique;
T'={(p.¢) |Ip€E Pg€ P};
T = T’ sorted by the three keys:
1) dist(p,q), 2) slope(p,q), 3) min; (p,q);
G=WV,E)=(0,
Forte€ T do
Q= {s €T | slope(s) = slope(t), :(s) > z1(),
length(s) = length(t)} sorted by z, coord;
A=1;B=2,C=3;
Until C > |Q] do
If Q4, @B, Qc define 2 congruent adjacent cells
Then V=V U{< A,B>,< B,C>};
E=FU{(<A,B>,<B,C>}
If ¢(QB) — e(Q4) > e(Qc) — ¢(QB)
Then C=C+1Else B=B+1;
Convert G to adjacency-list format (bucket sort);
Output the connected components of G.

Figure 4: An optimal O(n3) algorithm for the AMRSS problem.

References

[1] Ben-Tzvi, D. and M. B. Sandler (1990). A Com-
binatorial Hough Transform. Patlern Recog. Letl.
11, 167-174.

[2] Duda, R. and P. Hart (1972). Use of the Hough
Transform to Detect Lines and Curves in Pictures.
Communications of the ACM 15(1), 11-15.

[3] Edelsbrunner, H. (1987). Algorithms in Computa-
tional Geomelry, Springer-Verlag, Berlin.

[4] Edelsbrunner, H. and L. J. Guibas (1986). Topolog-
ically Sweeping an Arrangement. Proc. ACM Sym-
posium on Theory of Computing , 389-403.

[5) Kahng, A. and G. Robins (1990). technical report.
CSD-900045, UCLA CS Department.

[6] Preparata, F. P and M. I. Shamos (1985). Com-
putational Geometry: An Iniroduction. Springer-
Verlag, New York.

[7] Risse, T. (1989). Hough Transform for Line Recog-
nition: Complexity of Evidence Accumulation and
Cluster Detection. Computer Vision 46, 327-345.

