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Abstract
In this paper we first show that, for a planar graph G = (V, E) with vertex set V
(IV| > 22) and edge set E,

Z min{ deg(u), deg(v)} < 18|V]| - 72,
e=(u,v)€EE

where deg(v) is the degree of a vertex v € V, and that this is tight. Also, for a planar
graph having no cycle of length 3, the summation is shown to be at most 8|V| — 32. This
degree property can be used in the analysis of a computationally robust algorithm for
Voronoi diagrams (7] and also to obtain another optimal randomized algorithm for finding
the intersections among line segments and curves.

]

1. Introduction

In computational geometry, many geometric structures are represented as graphs, especxa.lly
planar graphs, and there arise new graph problems in analyzing geometric algorithms. In this
paper, we are interested in obtaining bounds of the sum of smaller endpoint degrees over edges of
graphs, and utilize them to devise efficient algorithms for geometric problems.

For an undirected graph G = (V, E) with vertex set V and edge set E, define D(G) by .

D(G)= 3 min{deg(u), deg(v)},
e=(u,v)€EE
where deg(v) is the degree of a vertex v. Chiba and Nishizeki [2] show that D(G) is at most 2a(G)| E|
where a(G) is the arboricity of G (the minimum number of trees covering G). Since the arboricity
of a planar graph is at most 3, this upper bound for planar graphs becomes 6|E| < 18|V|—36. This
paper investigates D(G) for planar graph G in more detail, and proves the following tight bounds.

Theorem. For a planar undirected graph G = (V, E), which is simple and connected, with
more than 22 vertices, D(G) < min{6|E| — 12, 18|V| — 72}. For a planar graph G’ = (V’, E') with
more than 14 vertices and without any cycle of length 3, D(G’) < min{4|E’| -8, 8|V’| - 32}. Also,
there exist graphs G and G’ satisfying D(G) = 18|V| - 72 and D(G’) = 8|V’|-32. O

This theorem can be used in the analysis of a computationally robust divide-and-conquer
algorithm for constructing the Delaunay triangulation (Oishi and Sugihara [7]). Furthermore, this
can be directly used to develop an optimal randomized algorithm for constructing the intersections
(or arrangements) of line segments and curves. In this extended abstract, we provide only an
outline of this algorithm. Although such optimal (randomized) algorithms are already known to
exist (Chazelle, Edelsbrunner (1], Mulmuley [6]), this indicates the usefulness of the theorem in
developing new geometric algorithms.
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2. Upper Bounds ‘ :,

Let G = (V,E) be a simple planar graph with vertex set V = {v,...,v,} and edge set
E = {e1,...,em}. A collection of pairs (v;, E;) (i = 1,...,n) of vertices v; and edge subsets E; C E
is called a (1, c)-matching if v; is an endpoint of each edge in E;, |E;] < c foreach i = 1,...,n, and

n

JE=E  EnZ=00G+4))

i=1
For X C E, define V(X) to be the set of endpoints of edges in X. As is well known in network
flow theory or transversal theory (e.g., see references in [5]), the existence of a (1, c)-matching is
equivalent to the following condition:

X elV(X)l (VX € E).

For a graph with arboricity ¢, |X| < ¢|]V(X)| — ¢ (@ # X C E) holds, which is used to derive a
bound 2¢|E| in [2].
Since G is a simple planar graph, Euler’s relation states that, for any X C E with |X| > 2,

|X| < 3|V(X)| - 6.

Hence, there exists a (1,3)-matching in G. Furthermore, in this case, it is seen that, for any pair of
distinct edges (vj, vk), (v, vs) € E, there exists a (1,3)-matching (vi, E;) (i = 1,...,n) satisfying
E; = {(vj,v)}, Ex = 0, deg(v;) < deg(vx), and one of |Ej| and |Ej| is 2 (e.g., see [5]). We then
have

D(G) = zn: ( Z min{ deg(u’), deg(v;) })

i=1 \e'=(uw',v)EE;

n
< (3 Z deg(v;)) — 2deg(v;) — 3deg(vi) — min{deg(v;), deg(vn)}
i=1
= 6| E| — 2deg(v;) — 3deg(vi) — min{deg(v;), deg(vsn)}.

Since G is connected, we can choose edges satisfying deg(v;), deg(v), deg(v;), deg(vs) > 2, D(G) <
6|E| ~ 12.

We now show that D(G) < 18|V| — 72 when G is a maximal planar graph with more than
22 vertices. As is well known, any maximal planar graph with more than 12 vertices has a vertex
with degree at least 6. Similarly, we can show that there exist at least 2 edges (u,v) with deg() +
deg(v) > 12 for sufficiently large maximal planar graphs, say maximal planar graph with more than
22 vertices. Choosing these two edges as (vj, vx) and (v, vs) and performing the case analysis, we
can show that D(G) < 6(3|V| — 6) — 36 = 18|V| — 72. The detail will be given in the full paper.
We thus have the upper bound for D(G) in Theorem.

Note that this proof also indicates that

D(G)<18V|-9-3 max deg(v;).

Hence, if there is a vertex with large degree, D(G) is much less than 18|V| — 72 accordingly.
Now, suppose that G does not have any cycle of length 3. Then, Euler’s relation states that,
for any X C E with | X| > 2,
| X] <2[V(X)| - 4.

Applying the above arguments to this case, we can obtain the bound for G’. The detail will be
described in the full version of this paper. Also, for this case, the proof also implies that

D(G'Y<4|E|-4-2 max deg(v;).

3. Lower Bounds

We next consider lower bounds of the summation in the theorem for planar graphs.

Consider a regular tetrahedron Tp whose edges are of unit length. Fach face is a regular
triangle, and there are 4 faces, 6 edges and 4 vertices of degree 3. By connecting the midpoints
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Figure 3.1. (a) T} and (b) S

of the edges, each triangle may be partitioned into four regular subtriangles; by repeating this
process k times (denote the resultant polyhedron by T;), each original triangle is divided into 4%
regular subtriangle with edges of length 27*. Figure 3.1(a) depicts T;. Then, in the interior of
each original face, there are 1 + 221 — 3. 2k=1 vertices of degree 6. Hence, in total, among
n = 4(1+ 221 - 3.2k1) 4 6(2% — 1) + 4 = 2 4 22¥*1 vertices, only 4 vertices have degree 3 and
the others 6, and no edge connects vertices of degree 3. Therefore, for such n = 2 + 2 - 4% with
k = 2,3,..., there exists a planar graph with n vertices for which the summation in the theorem
is 18n — 72.

To obtain a lower bound for planar graphs without cycle of length 3, construct the following
series of graphs. S is a square. We regard a pair of diagonal vertices in Sp as new vertices. Siy;
is constructed from 5; by adding two new vertices and connect each of them with the new vertices
in S;. Figure 3.1(b) illustrates S,. S; has n = 4 + 2i vertices, and D(S;) =8n—-32fori>1.

4. An Optimal Randomized Algorithm for Arrangements of Curves

In this extended abstract, we will describe an O(N?)-time randomized algorithm for construct-
ing an arrangement of N lines, without using the zone theorem for lines. This illustrates, for the
problem of constructing an arrangement of N curves such that any two curves intersect at a con-
stant number of points, how a simple incremental algorithm using a careful search technique with
O(N?) randomized time complexity may be devised based on the inequality in Theorem.

An incremental algorithm for constructing the arrangement of N lines lj,ls,...,IN works
roughly as follows: at the first stage, construct a trivial arrangement of one line I;; at the ith
stage (i = 2,3,..., N), add line /; to the arrangement of lines ;. ..,/;_;, which has been computed
already, to obtain the arrangement of lines Iy, ...,1;_;,/;. Here, the arrangement is represented by
a standard data structure for planar subdivisions.

The main step here is to.add /; to the arrangement A;_; of I1,...,/;_;. To do this, we find
an edge e of the arrangement A;_, that is just above I; at £ = —o0, and a cell ¢ intersecting /; at
x = —oco. This can be done in linear time by finding, from among the lines Iy,...,/;_;, the line of
largest slope less than that of /;. We then traverse 4;_; along /; by following edges of the cell ¢ in
clockwise order, starting with e, to find a new intersection point of /; with an edge €’ of the cell.
We iterate for e := ¢’ and ¢ :=cell adjacent to c at ¢’ until a cell is found intersecting /; at z = +oo.
See Figure 4.1(a).

The time complexity of adding I; to A;_, is proportional to the number of edges of cells in A;_,
intersecting I; (these cells form a zone of /;, and this number is the complexity of the zone). The
well-known zone theorem for lines (e.g., [3]) states that the complexity of this zone is O(i). Hence,
it takes O(?) time to insert I; to A;_; to construct A;, and in total the arrangement of N lines can
be constructed in O(N?) time. Note that this time complexity is worst-case optimal, since the size
of a simple arrangement is Q(N2). | ;

In the above algorithm, of the cells intersecting I;, only the portion above I; is traversed.
Instead of this, we may traverse edges of the upper and lower parts of a cell intersecting I; one
by one simultaneously so that a new intersection point of ; with the cell may be found in time
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Figure 4.1. (a) A simple incremental algorithm and (b) an incremental algorithm which
chooses shorter paths

point to the new one. See Figure 4. l(b) This way of traversing cells is sometimes used in other
geometric algorithms.

Now, let e(l;) be the number of edges traversed in adding /; to the arrangement of lines
{h,...,;} = {I;} with choosing shorter paths as above (j = 1,...,1). Consider the dual graph of
the arrangement of Iy, ..., [; as a planar graph. This dual graph has at most i? edges, and does not
have any cycle of length 3. Hence, applying the latter part of Theorem, it is seen that

1]
D e(l;) < 2-4i%
=1
By randomizing the order of insertion of lines in this modified incremnental algorithm, the number
of edges traversed in adding the ith line is at most 8¢ on the average. This implies that in total
this algorithm constructs the arrangement of N lines in O(NN?) average time.

This idea can be carried over for the case of the arrangement of curves, for which we need some
of the techniques developed in [4,6], say the vertical decomposition of the arrangement. Besides
these applications and that of (7], Theorem could be useful in the analysis of other geometric and
graph problems.
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