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Stmple randomized O(nlog* n) algorithms*

Olivier Devillerst

Abstract : We use here the results on the influence
graph [2] to adapt them for particular cases where addi-
tional information is available. In some cases, it is possible to
improve the expected randomized complexity of algorithms
from O(nlogn) to O(ulog* u).

This technique applies in the following applications : trian-
gulation of a simple polygon, medial axis of a simple polygon,
Delaunay triangulation of vertices of a convex polygon, De-
launay triangulation of points knowing the MST (minimum
spanning tree).

1 Introduction

Some worst case optimal algorithms in computational
geometry are rather complicated and very difficult to
implement.  An attractive alternative is to use simpler
algorithms whose complexities are not worst case opti-
mal but only randomized, i.c. when averaging over all
the possible executions of the algorithin. In particular.
randomized incremental algorithis suppose only that all
the n! possible orders to introduce the n data are evenly
probable. It is important to notice that no hypothesis is
done about the data themselves.

‘The two major techniques for incremental randomized
constructions arc the conflict and influence graphs. The
conflict graph [4] is a bipartite graph linking the already
constructed results to the data not yet inserted. The
algorithms using such a structure are obviously static.

The influence graph [2] links together all the interme-
diate results and can be used in a semi-dynamic way.

‘The conflict and influence graphs solve various prob-
lems with optimal expected bounds. For example, the
vertical visibility map of a set of n non intersecting line
segmients is computed in O(nlogn) expected time. In
this special case, Scidel [5], merging the two kinds of
graphs. succeeds in using additional information to speed
up the algorithm. More precisely. the visibility map of a
simple n-gon is constructed in O(n log™ n) expected time.

This article proposcs new and simpler proofs for the
complexity of the conflict and influence graphs that al-
low 10 extend Seidel's technique to other applications :
triangulation of a simple polygon, Delaunay triangula-
tion of vertices of a convex polygon. medial axis of a
simple polygon. Delaunay triangulation of points know-
ing the cuclidean minimum spanning tree. For all these
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problems the expected complexity is O(n log™ n), and the
algorithms are simple and easy to code. The two first
problems admit linear deterministic solutions [3,1] but
they are fairly complicated and do not vield practical
algorithmns ; for the others, the existence of a (n logn)
deterministic solution is still open.

2 Conflict and influence graphs

The problem must be formulated in terms of objects and
regions. The objects are the input data of the problem,
they belong to the universe of objects O. For example
O may be the set of the points, the lines or the hyper-
planes of some euclidean space. The regions are defined
by subsets of O of less than b objects. The notion of
conflict is now introduced : an object and a region may
be, or not, in conflict. If F is a region, the subsct of ©
consisting of the objects in conflict with F is called the
influence range of F.

Now, the aim is to compute for a finite subset S of
O, the regions defined by the objects of S and without
conflict with objects of S ; such a region is called an
emply region of S. The requested result is supposed to
be exactly the sct of empty regions or easily deductible
from it. '

Many geometric problems can be formulated in that
way. The vertical visibility map of line scgments is a
set of emply trapezoids. The Delaunay triangulation of
points is a set of triangles with emply circumscribing
balls. A visibility graph of a sct of line segments is a set
of emply triangles.

The conflict graph

Clarkson and Shor [4] developped some algorithms based
on a structure called the conflict graph. This graph is a
bipartite graph between the empty regions of a subset
S’ of S, and the other objects in S\ S’. A region and an
object are linked together if they are in conflict. Thus all
the conflict relationships are stored in the conflict graph
and can be used in the algorithm.

The process is initialized with 8’ = 0. There is a
unique empty region ¢ defined by 0 objects and each
object of S is in conflict with . At each step, an object
O of S\ &' is added to S’. All the regions in conflict
with O are known, these regions do not remain empty
after the insertion of O and must be deleted. The new
empty regions defined by O (and other objects of §') are
created and the conflicts involving these new regions are
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computed to replace the conflicts involving the deleted
regions. When S = &’. the conflict graph is exactly the
set of empty regions of § which is exactly the result.
For the randomized analysis, the points of § are sup-
posed to be added to S’ in random order.

The influence graph

The conflict graph gives immediately the regions in con-
flict with the new object. but its design itself requires to
know all the objects at the beginning of the execution.
The algorithms using such a structure are intrinsically
static.

‘The influence graph [2] is a location structure for the
determination of conflicts. The nodes of this graph are
the regions having been empty at one step of the incre-
mental construction. This graph is rooted, directed and
acyclic ; the leaves of this graph are the currently empty
regions. The influence graph satisfies the following prop-
erty : the influence range of a region is included in the
union of the influence ranges of its parents.

The influence graph is initialized with a single node :
the root, associated to the region ¢ whose influence range
is the whole universe of objects ©. When a new object O
is inserted, the above property allows to traverse all the
regions of the graph in conflict with O ; all the empty
regions in conflict are reported. These regions do not
remain empty (they contain Q) but they still are nodes
of the influence graph. Then, as for the conflict graph,
the new empty regions are computed, and are linked to
the already existing regions in order to ensure the further
determination of contflicts ; they are linked such that the
property is verified.

For the sake of simplicity, we will suppose that the
number of sons of a node is bounded. This hypothesis
is nut really necessary and can be relaxed ; but it is
fulfilled by a large class of geometric problems and allows
to express the results in a simple way.

3 Analysis

The proofs of lemmas are omitted in this abstract. Let
us just recall here, that all results are randomized, that
is the n! possible orders for the insertion of the n objects
in S arc evenly probable.

All the complexity results depend on the expected
number of regions defined by the r objects of the sample.
and empty (with respect to the sample). As in this arti-
cle. we focus our interest on cases where the complexity
of the result for r objects is O(r). we directly give the
results in this case. For more complete results, see the
full paper (available from the author).

Lemma 1 The erpecled number of conflicts belween
the regions emply ai slage k and lhe Ith ohject is O(1)
(with k < 1).

Lemma 2 The capected number of conflicts between
the regions created (and thus emply) at stage k and the
" Gbject is O (%) (with k< 1).

Lemma 3 The erpecicd number of regions crealed by
the insertion of the kM object is o(1).

The following theorem summarizes the complexity re-
sults. The proof is done by summing the quantity in
Lemmas 1, 2 and 3 in different manners.

Theorem 4 If n objecis yield O(n) empty regions (all
complezilies are ezpecled) :

1. The size of the conflict graph at stage k is O(n — k).
2. O (ﬂ-‘r"') edges are crealed in the conflicl graph
al stage k. The whole cost of lhe algorithm is
O (5= 27t) = O(nlogn).

3. The size of the influence graph al stage k is O(k).
4. The cost of inserting the I'® object in the influence
graph is O(logl). The whole cost of the algorithm is
O(Y )., logl) = O(nlogn).

5. The cost of inserting the I'®
graph knowing the conflicts af stage j is O (log f) .
Sketch of proof.

1. The size of the conflict graph is its number of edges. At
stage k an edge corresponds to a conflict between a region
empty at stage k and the 1th ohject with I > k. Thus sum-
ming quantity of Lemma 1 for k < < n yiclds the result.
2. An edge of the conflict graph between F and the i*h object
is created at stage k if F is created at stage k and if F is
in conflict with the I'® object. Thus summing quantity of
Lemma 2 for k < I < n yields the result.

3. By the bounded number of sons condition, the size of the
influence graph is equal to its number of nodes. This number
is simply the sum over all the regions of the probability for a
region to be a node of the graph (see Lemma 3).

4. During the insertion of the ith object, the conflicts are
located by a traversal of the influence graph. A node F is
visited if it is in conflict with the I'® object. By summing
over k < I the stage of creation of F the quantity of Lemma
2, we get the result.

5. Same result starting the summation at k = j. =}

object in the influence

4 Accelerated algorithms

The principle of accelerated algorithms, introduced by
Seidel [5], speed up the algorithm using Theorem 4.5.
The idea is : if the conflict graph al stage k is known,
the inscrtion in the influence graph can be done faster.
At the beginning, the influcnce graph is constructed in
the usual way, and for some stages N;, the conflict graph
at stage N; is computed using a direct method exploiting
some additional structural information on the objects.
To insert the I'h object in the influence graph (N; <
1 < Ni41), the conflicts at stage N; arc found using the
conflict graph, and then the conflicts at stage | — 1 are
deduced by traversing the influence graph. By choosing
Ni =|~TJ$)":J (where log!") denotes i iterations of log),

the cost of inserting objects in the influcnce graph be-
tween the key values N; and Ny, is

2 FRYD)
o (log N.) < E (¢} (Iog [n log n])
Ni<1€Nu4 1€V

< N0 (log"* n) < O(n)
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Figure I: Examples of regions for the EDT

For an efficient application of this principle. it is nec-
essary (o be able to determine the conflict graph in a
direct way from the whole sct of objects. and the sct
of enipty regions of a sample ». We suppose that this
can be done in expected time O(n) (remember that the
expected size of this graph is O(n - r)).

Thus the cost between two key values, for the two
steps : the influence graph step. and the direct construe-
tyi()n of the conflict graph is O(n). As Niogen)y-1 S n <
Niogen the number of relevant key values is log“n and
the whole cost of the algorithn is O(n log* n).

Theorem 5 If Theorem § applies and if the conflict
graph belween the objects and the emply regions of a ran-
dom sample can be compuled in O(n) expected time, then
the acceleraled algorithin vuns in O(nlog™ n) time.

5 Applications

The first application is the triangulation of a simple poly-
gon. This problem can be solved in linear time by a
determinitic algorithm of Chazelle [3], impossible to im-
plement in practice. The solution of Seidel yiclds a sim-
ple randomized algorithin in O(nlog* n) 1o compute the
vertical visibility map.

This algorithin is not detailed here, the reader can
refer 1o [5]. Seidel’s analysis is simpler than that of Sce-
tion 3 and cannot be generalized directly because he uses
special properties of his application.

Influcnce graphs for Voronoi diagrams

‘This paragraph shows a randomized algorithm to com-
pute the Voronoi diagram of a set of points or line seg-
ments in the plane in O(nlog n) expected time. The next
paragraphs will be devoted to accclerated algorithms in
O(nlog™n) for Voronoi diagrams.

We consider here the case of the Voronoi diagram of a
set of line segments in the plane. for the usual euclidean
distance (the dual is the edge Delaunay triangulation).
The Voronol diagram of a set of points is obviously a
special case,

Hereothe objects are the line segments of the euclidean
plane. A region is defined by four objects p.q. s : con-
sider I the portion of the biseetor of ¢ and r between the

/
’
’ \
The new segment M e e
Fdges comresponding 1o regions in conflict with m.. . ... . L4

Edges comresponding 10 new regions created by m — — —
Figure 2: Inscrtion of m in the Voronoi diagram

two points equidistant of pgr and gqrs respectively ; the
region pqrs is the union of the disks tangent to ¢ and r
whose centers lieon T'. If s = oo then T' extends to infin-
ity. and the disk centered at infinity is an half-plane (sce
Figure 1). A line segment and a region are in conflict if
and only if they intersect, thus a region is empty iff it
corresponds to an edge of the Voronoi diagram.

When a new segment m is added, the influence graph
allows the determination of the empty regions in conflict
with m, they correspond to disappearing edges of the
Voronoi diagram. Let E be such an edge. If one of the
two end-points of £ is still a valid vertex of the Voronoi
diagram, we compute in constant time the portion of E
that remains in the new diagram. The new region asso-
ciated with that new edge becomes a son of the region
associated with E. We then connect the new vertices
of the Voronoi diagram (which are new end-points lying
on old edges) by edges supported by new bisectors (see
Figure 2). The region corresponding to a new edge F' is
made son of the regions associated with the unique path
of disappearing edges that joins the two end points of E’
(the set of disappearing edges form a tree, as can casily
be shown).

The size of the Voronoi diagram is O(n), Theorem
4 applics : the Voronoi diagram can be computed in
O(nlogn) time using the influence graph or the conflict
graph.

Accelerated Delaunay triangulation of points

For a set of points in the plane, it is possible to cxploit a
partial knowing of the Delaunay triangulation to speed
up its complete reconstruction. More precisely. our tech-
nique applies if any connected spanning subgraph T of
the final Delaunay triangulation with a bound.. degree
d is known in advance. The Euclidean Minimum Span-
nig Tree of the points is such a graph. The existence of a
determinitic algorithm computing the Delaunay triangu-
lation knowing the MST in o(n log n) time remains open.
Another case happen if the points arer the vertices of a
convex polygon. This problens is solved in deterministic
way in [1] using a complicated divide and conquer algo-
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rithm whose complexity is linear (with a high constant).
We show here how our method vields an efficient and
simpler algorithm.

The Influence graph algorithm is described above, we
have just here to describe the algorithm for a direct de-
termination of the conflict graph at stage &.

First, we show that the expected number of intersec-
tion points between T and the Delaunay triangulation of
a sample of the points is O(dn). Let vu be an edgeof T
and ab an edge of the Delaunay triangulation of the sam-
ple. There exists an empty region abed of the sample. If
vw intersects ab, then one of the two points v or w lies
necessarily in the ball circumscribing abe because if it is
not true, a circle passing through v and w must contain
either @ or b and vw cannot be a Delaunay edge in the
final triangulation. So. without lost of generality, sup-
pose that v is in conflict with a region abed, the number
of intersection points with ab is bounded by the number
of such points v in conflict with abed multiplied by the
maximal degree d of a vertex of 7. By summing over
all regions, the expected number of intersection points is
O(dn).

At this time, it is clearly possible to find the Delaunay
triangle in the sample containing each vertex of T by a
simple traversal of T and computing all the intersection
points. The other conflicts can be deduced using the
adjacency relations in the Delaunay triangulation of the
sample. Thus Theorem 5 applies : knowing a spanning
subgraph of the Delaunay triangulation with maximal
degree d, the whole triangulation can be constructed in
expected time O(nd log™ n).

If the points are the vertices of a convex polygon,
the edges of this polygon form a spanning subgraph of
the Delaunay triangulation where each vertex has de-
gree 2. Using Theorem 5 we conclude that the Delaunay
triangulation of a convex polygon can be computed in
O(nlog™ n) expected time.

The EMST also verifies the hypothesis, its edges are
in the Delaunay triangnlation and its maximal degrec
is less than 6. (Two edges incident to a same vertex
must form an angle greater than %.) Thus, knowing the
EMST the Delaunay triangulation can be computed in
O(nlog™ n) expected time.

Accelerated medial axis of a simple polygon

The influence graph can be used to compute the Voronot
diagram of a set of line segments. If these segments form
asimple polygon, or more generally if they are connected
then the algorithm can be speed up. The Voronoi dia-
gram of a simple polygon is called its medial axis. The
existence of a deterministic o(n log n) algorithm is open.
the convex case is solved in O(n) time [1].

Let the line segments so,...,5,_; be a simple poly-
gon. s; = p;piy1 (po = pn). For a sample of size k.
Ss(1)----Sa(k). the Voronoi diagram has been already
computed. Then we show how to construct the conflict
graph in linear time.

From the line segment $a(1) = Po(1)Po(1)41 the regions
defined by Po(1)+1 are found. Using the adjacency rela-
tions in the Voronoi diagram, all the regions in conflict
with 85(1y41 = Po(1)41Ps(1)42 are reported and one re-
gion containing point p, y+2 is ’kept apart to initialize
the search for the next line segment Ss(1)+2- By a sin-
gle walk around the polygon, the whole conflict ‘graph
is computed. The complexity of this algorithm is pro-
portional to the number of conflicts reported, which is
expected to be O(n). Using Theorem 5 the medial axis
of a simple polygon (or any connected planar graph) can
be done in O(nlog* n) expected time.

6 Conclusion

This paper presents various applications of a general
scheme of randomized accelerated algorithms. If a prob-
lem can be solved in O(n log n) time using the usual ran-
domized technique of the conflict graph or the influence
graph, it is often possible to use some additional infor-
mation to speed up the algorithm, and by merging both
concepts of the conflict and influence graphs to reach a
complexity of O(n log* n).

This paradigm is applied in Section 5 to two problems
having known deterministic solutions of optimal worst
case complexities ©(n) : the triangulation of a simple
polygon, and the Delaunay triangulation of a convex
polygon. These optimal algorithms are fairly compli-
cated and if the complexities are not improved here, we
propose much more simpler algorithms. For the edge De-
launay triangulation of a simple polygon ahd the Delau-
nay triangulation of a set of points knowing the minimin
spanning tree, the existence of O(n log* n) randotiized
algotithm, even if no o(f1logn) algorithms was known
before, makes us conjecture that the complexity of these
problems is ©(n). Computing Delaunay knowing the
MST in ©(n) time will be very interesting because it
will prove the equivalence between the two probleriis (the
MST can be deduced from Delaunay in ©(n)). This tech-
nique is powerful and may probably be applied to other
problems whose complexity is Q(n) and O(n log n).
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