130

A Simple Randomized Sieve Algorithm for the
Closest-Pair Problem

Samir Khuller * Yossi Matias *!
University of Maryland University of Maryland
& Tel Aviv University

Abstract

We present a linear time randomized sieve algorithm for the closest-pair problem. The
algorithm as well as its analysis are simple.)

1. Introduction

The closest-pair problem can be found in almost any algorithms text-book as a basic problem in
computational geometry (see e.g., [CLR90, PS86, Man89]). Deterministic algorithms that run in
O(nlogn) time are due to [Ben80, BS76, SH75, HNS88). These algorithms arc optimal in the
algebraic decision-tree model of computation, where a matching lower bound of f2(nlogn), even
for the 1-dimensional closest-pair problem, is implied by a lower bound for element distinctness
[Ben83]. This simply stated problem was used by Rabin [Rab76] in a classic paper, to illustrate the
power of randomization, where he gave an algorithm that takes only O(n) expected running time.
Rabin uses a random sampling technique to decompose the problem into “small” subproblems for
which the total cost of a brute force method is expected to be linear. His algorithm, although
simple, has a somewhat complicated analysis.

In this paper, we present a novel approach using a sieve technique that yiclds a simple new
algorithm. The algorithm takes linear expected time and has a simple analysis.

The closest-pair problem is defined as follows: given a set S of n points in R, for some constant
d > 0, the task is to find the closest pair of points (in Euclidean distance).

The algorithm is described for the planc and can be easily extended to run in linear expected
time for any fixed dimension.

*Partially supported by NSF grant CCR-8906949.
'Address: UMIACS, AV Williams Bldg., University of Maryland, College Park, MD 20742,

131

The more general all nearest neighbours problem, in which we are required to compute the
closest neighbours for each point in the set S, has also been well studied [Ben80]. A randomized
O(nlogn) algorithm was given by [Cla83], and a deterministic O(nlogn) algorithm was given by
[V89].

2. The Sieve Closest-Pair Algorithm

Let S be the initial set of given points. We use 6(.5) to denote the distance between points of the
closest pair in S. We will assume that the points are not numbered, and we will number them as
the algorithm proceeds. The algorithm consists of two stages. We first compute an approximation
for 6(5); then, the approximation is used to compute 6(S). The main idea of the algorithm is
to do a simple “filtering” process, in which points are deleted from the set. Let S; be the set of
remaining points at the start of iteration i (initially $; is). The filtering continues as long as
Si is non-empty. In the filtering, the sizes of the sets S; are shrinking rapidly. At the end of the
process we get an approximation (up to a factor of 3) to the closest-pair distance. We then use a
simple technique to find the closest pair.

The filtering process: Pick at random a point from S; and call it z;. ‘The distance to the closest
point from a point z, in the current set S; is defined to be d(z). Compute d(z;) by computing
the distance from z; to all points in S;. To obtain Si+1 we delete from S; all points z such that
d(z) > d(z;). In this process, we may also delete some points = such that d(z;) > d(z) > d(z;)/3.
However, all points z such that d(z) < d(z;)/3 will remain in S;;;. We stop the filtering process
when the set 5; becomes empty. Let i* be the smallest index such that S; is+1 =0 and S;+ # 0. Let

« be the point selected at random from Sj+ at iteration i*. The closest- -pair distance 6(5) is at
most d(z;+) and at least d(z;+)/3. Thus at the end of the filtering process we find an approximation
to 6(.5) within a lactor of 3.

2v/2b

Figure 1: Neighborhood of a point z

It remains to show how to implement the above process, and how to use the resulting approx-
imation d(z;+) to find the closest pair. These can be done easily by the notion of “neighborhood”.

132

This notion was previously used in other algorithms for the closest-pair problem and for the more
general all-nearest-neighbours problem. Consider a mesh of size b. The neighborhood of a point z,
is the cell containing = plus the 8 neighboring cells (see Figure 1). Let N(z) be the set of points
in the neighborhood of z. The following facts can be easily verified.

(1) All points whose distance from z is at least 3b (actually 2v/2b) are not in N(z).

(2) All points whose distance from z is at most b are in N(z).

Note that points with distance from z between b and 2v/2b may be either in N(z) or not in N(z).

Implementation of “filtering”: Let z; be a point selected at random from set S; in iteration .
We build a mesh of size b = d(z;)/3. A point z is delcted from S; if and only if it is the only point
in its neighborhood, (i.e., the only point in N(z)). This can be implemented in O(]S;|) expected
number of steps and linear space, by using a perfect hash function [FFKS81].

Lemma 2.1: When the algorithm terminates (Sis4; = @), then d(z;+)/3 < §(.5) < d(z;+).

Proof: Clearly, 6(S) < d(x;+) (by definition). By Fact (1), in iteration 7 all points z with d(z) >
d(z;) are deleted. Therefore, the sequence {d(z;)} is monotonically decreasing. Let j* be the first
iteration in which a point u of the closest-pair is deleted from S;+. By Fact (2) all points = with
d(z) < d(zj+)/3 are not deleted from S;«. Note that d(u) = 6(5) since both closest-pair points are
in §j+. Therefore, §(S) > d(z;+)/3 > d(z;+)/3. o

Computing §(S) from its approximation: We will use the following simple facts.

Consider a mesh of size b and assume that b/3 < §(S) < b. Then

(3) The neighborhood of each point in S contains at most a constant number of points.

(4) Each point of the closest pair is contained in the neighborhood of the other point.

We construct a mesh of size d(z;+) (the approximation of §(5)). For each non-empty cell
we build a list of all points in this cell. This can be implemented in linear expected time and
linear space by using a perfect hash function [FKS84]. Then, for each point we find the distance
to its closest point in its neighborhood, if such a point exists. By Fact (3) this can be done in
constant time per point, by using a brute force method (or other more efficient techniques). Fact
(4) guarantees that for each point from the closest pair, the other point is in its neighborhood.
Thus, the closest pair will be found by computing the minimum over the distances.

We now give the algorithm in more detail.

133

The Sieve Closest-Pair Algorithm:

Step 0. Initialize Sy to be S, and i = 1.

Step 1. Pick at random a point z; from S;, and compute d(z;), the distance to the closest point
in S;.

Step 2. Construct a mesh of size b = d(z;)/3; Define X; = {z, | N(z;) = {z;}};
Sit1 =9 - X,.

Step 3. If Siy1 # 0 then ¢ = i + 1, and goto Step 1.
Else (if Sip1 = 0) let i* = 4. (d(2i+)/3 < §(S) < d(z;+).)

Step 4. Construct a mesh of size d(z;+). For each point z in S, compute the distance to the
closest point to z in N(z) (if there is such a point). Find the closest pair by computing the
minimum over all computed distances.

Analysis:

The only thing to show is that the filtering process takes expected linear time. As noted above
the cost of iteration i is lincar in the size of S;. Let us first explain intuitively why the sizes of the
sets 53, 1 = 1,2,. ., is expected to decrease at least geometrically. The key idea is to consider the
sequence {d(x):x € S;} in non-decreasing order. When selecting at random z;, all points z such
that d(x) > d(a;) are deleted. Thus, on the average half of the points are deleted in each iteration,
and hence a geometric decrease is expected. Formally we have

Lemma 2.2:
i‘
E (Z | S l) <2n
1=1

Proof: Let s; be the cardinality of S;. We first show by induction that E(s;) < %7 for i > 1. By
the argument given above, E(3;41) < s;/2. Therefore,

E(s;).

N | =

E(sis1) = E(E(siy1)) < E (52-) -

‘Thus, by inductive hypothesis, E (s;41) < %E,l‘_—, = 2.

By linearity of expectation,

E (5:35) = i:E(si) < i:é—tnfl— < 2n.
i=1

i=1 i=1

We therefore have,

134

Theorem The sieve closest-pair algorithm solves the closest-pair problem in O(n) expected time
and O(n) space.

Acknowledgments: We are grateful to Mike Atallah, Omer Berkman, Dave Mount, Micha Sharir,
and Uzi Vishkin for helpful comments.

References

[Ben80] J. L. Bentley, “Multidimensional divide-and-conquer”, Comm. ACM 23, pp. 214-229,
(1980).

[Ben83] M. Ben-Or, “Lower bounds for algebraic computation trees”, 15th Symp. on the Theory
of Computing, pp. 80-86, (1983).

[BS76] J. L. Bentley and I. Shamos, “Divide and conquer in multidimensional space”, 8th Symp.
on the Theory of Computing, pp. 220-230, (1976).

[Cla83] K. L. Clarkson, “Fast algorithms for the all nearest neighbours problem”, 24th Symp. on
Foundations of Computer Science, pp. 226--232, (1983).

[CLR90] T. Cormen, C. Leiserson and R. Rivest, “Introduction to Algorithms”, McGraw Hill and
The MIT Press, (1990).

[FKS84] M. L. Fredman, J. Komlés, and E. Szemerédi, “Storing a sparse table with O(1) worst
case access time”, J. of the Association for Computing Machinery, 31, pp. 538--544, (1984).

[HNS88] K. Hinrichs, J. Nievergelt and P. Schorn, “Plane-sweep solves the closest pair problem
elegantly”, Information Processing Letters, 26, pp. 255-261, (1988).

[Man89] U. Manber, “Introduction to Algorithms: A Creative Approach”, Addison Wesley, (1989).
[PS86] F. Preparata and M. Shamos, “Computational Geometry”, Springer Verlag, (1986).

[Rab76] M. Rabin, “Probabilistic Algorithms”, in Algorithms and Complezity, Recent Results and
New Directions, Academic Press, pp. 21-39, (1976).

[SH75] M. L. Shamos and D. Hoey, “Closest-point problems”, 16th Annual Symposium on Foun-
dations of Computer Science, pp. 151-162, (1975).

[V89] P. M. Vaidya, “An O(nlogn) algorithm for the all-nearest-neighbors problem”, Discrele &
Comput. Geometry, 4, pp. 101115, (1989).

