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Minimal circumscribing simplices

Gert Vegter; Chee Yap!

Introduction

In recent years considerable attention has been devoted to
the problem of approximating geometric objects by sim-
pler objects. In computer graphics one approximates poly-
hedral models by bounding balls or bounding boxes to ob-
tain fast rendering algorithms. Similar techniques are ap-
plied in the context of motion planning to detect collisions
between moving obstacles. In the plane very efficient al-
gorithms have been developed for circumscribing or in-
scribing a given polyon with convex k-gons of minimal or
maximal area, respectively.

In [2] an O(n log? n) algorithm is obtained for comput-

ing a minimum area circumscribing triangle of a convex

n-gon. This time bound has been improved to O(n) in [S].
A unified approach to both problems is contained in [3].
The algorithms in [2] and [3] determine a large class of cir-
cumscribing triangles that are locally minimal in the sense
that any circumscribing triangle that is a sufficiently small
perturbation of the given triangle does not have smaller
area. We shall use the term locally minimal exclusively in
this sense. -

In this paper we analyze simplices with locally mini-
mal volume circumscribing a convex polytope in IR®. This
constitutes a first step towards the development of an algo-
rithm that computes a circumscribing simplex with mini-
mal volume.

A necessary condition for local minimality is that all
centroids of facets lie on the circumscribed polyhedron.
However, if these are the only constraints the volume is
not a local minimum. Therefore we consider additional
constraints like fixing the supporting hyperplane of some
facets, corresponding to the situation in which the poly-
hedron has a facet that is flush with a facet of the simplex
circumscribing it. For polytopes in IR® we give a complete
classification of locally minimal circumscribing simplices
each of whose facets has a contact with the polytope either
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of maximal dimension (d — 1, flush facet) or of minimal
dimension (0, contact at facet centroid).

It turns out that there can be locally minimal circum-
scribing simplices whose facets have contacts of neither
minimal nor maximal dimension. We give a complete
classification only in for polytopes in 3-space.

Crucial in our approach are barycentric coordinates.
Especially when dealing with volumes they turn out to be
very convenient. We first introduce these coordinates and
state some properties relevant for our problem. Then we
consider necessary and, in 3-space, sufficient conditions
for local minimality of the volume function.

Barycentric coordinates

Fix d +1 pointsp!, - - -, p?*! in IR? that are affinely inde-
pendent. These points are the vertices of a d-dimensional
simplex £. For each point z in IR? the barycentric coor-
dinates (€1, - - - ,€441) are the weights that have to be put
in the points p*, - - -, p?*!, respectively, in order to make
z their center of mass. Obviously barycentric coordinates
are homogeneous. In other words, {1, - - -, §a+1 are deter-
mined up to a scalar factor by the condition

d+1 d+1

T= Z Emp™/ Z &m (1)

m=1 m=1

These coordinates can be made unique by imposing the
constraint
d+1

Y Em=1 @)
. m=1

The numbers &, 1 < m < d + 1, satisfying (1) and 2
will be called normalized barycentric coordinates of the
point z.

In particular the point p™ has normalized barycentric
coordinates 6™, 1 < n < d+ L (Here 67 is the
Kronecker delta-symbol.) The d-simplex £, with ver-
tices pt, - - -, pA+1 is called the simplex of reference for the
barycentric coordinates just introduced.



Consider a simplex T, with vertices ¢!,-- -, ¢%+!. The
normalized barycentric coordinates of ¢™ (w.r. to £,) are
denoted by (¢7*, - - -, ¢74). The following basic proper-
ties of barycentric coordinates are the basic tools in our
approach.

BC,;. Let Q bethe (d+1) x (d+1)-matrix whose m-throw
consists of the normalized barycentric coordinates of
", ie. Q= (Qnm)ISm,n$d+1~ Then

Vol(
Vol ) ) =|detQl,
BC,. If the vertices p?, - - -, p?*+? are the centroids of the
facets, i.e. (d — 1)-dimensional faces, f!,- .., fo+1,
respectively, then the normalized barycentric coordi-
nates of g™ with respect to the simplex of reference

Ep are (q;n, tt Yy q'dn+l)’ Whel’e
m_J 1—=d, ifm=n,
=11, ifm #n.
BCs. Suppose a™  has  barycentric  coordi-

nates a*,---,agy,, 1 < m < d+ 1, then points
al,---,a%*! are affinely independent (in general po-
sition) iff.
a} - a}“.l
: : |40
d+1 d+1
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In the sequel we consider simplices ¥ obtained by per-
turbing a simplex X, within the class of simplices whose
m-th face is constrained to contain the centroid p™ of
the m-th face of ;. We use normalized barycen-
tric coordinates whose simplex of reference has vertices
p!,---,p?t!. Inparticular p™ has barycentric coordinates
6, 1 < n < d+ 1, and therefore vertices of T have
barycentric coordinates 1 - 67'd, 1 < n < d+ 1, cf. prop-
erty BCj.

Let ¢!, .-, ¢! be the vertices of T, and let f™ be its
m-th face (opposite ¢™). Then the normalized barycen-
tric coordinates of ¢™ are of the form 1 — 67'd + £,
1 < n < d+1, where (6T, - - -, €7 ) ranges over a neigh-
borhood of (0, - 0) in m"“, subject to the normaliza-
tion constraint Z"_ & =0.

Constrained volume minimization

The following result gives a necessary condition for the
situation in which a circumscribing simplex has locally
minimal volume. In the full version of this paper we pro-
vide a proof using barycentric coordinates.
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Theorem 1 (V.Klee[1]) Consider a simplex ¥ withone
facet constrained by a (d — 2) flat that does not contain
the centroid of this facet. Then an arbitrarily small per-
turbation of this facet that respects the constraint yields a
simplex whose volume is stricily smaller than the volume
of X provided the centroid of the unperturbed facet lies
outside the new simplex.

Corollary 2 If a circumscribing simplex T for the poly-
tope P has locally minimal volume then the centroids of
the facets of X lie on P. (In this case ¥ is called a criti-
cal simplex.)

We shall consider circumscribing simplices that are pertur-
bations of a critical simplex and also satisfy certain con-
straints concerning the contact with the polytope they cir-
cumscribe. The mildest constraint is that each facet con-
tains a fixed point (which is a facet centroid of the un-
perturbed simplex). We call this a constraint of type V/,
since a polytope can only touch a facet in a single point
if this point is a vertex of the polytope. The most severe
constraint fixes the supporting hyperplane of a facet of the
simplex. This constraint is of type F. It corresponds to the
situation in which a facet of the circumscribed polytope is
flush with a facet of the simplex.

'We shall only consider contacts of intermediate dimen-
sion in the 3-dimensional situation. This class of con-
straints is of type E, corresponding to the situation in
which an edge of the polytope is flush with a face of the
circumscribing simplex (a tetrahedron in this case).

Using this notation the constraint V¢ F?, witha + b =
d + 1, corresponds to a situation in which exactly b facets
of the simplex have fixed supporting hyperplanes, and the
a remaining facets are merely constrained by the centroid
of . In three dimensions we also consider constraints of
type Ve E*F¢, with a + b+ ¢ = d + 1. The meaning of this
notation is obvious. For our purposes it is irrelevant which
facets satisfy a constraint of type F, E or V, so we don’t
express this in our notation.

First we consider perturbations of a critical simplex sat-
isfying a constraint of type VeFb witha+b=d+1, for
various values of a.

Theorem 3 Consider a critical simplex ;.

1. Among all simplices satisfying a constraint of type
V F4 the volume-of T, is strictly locally minimal.

2. Among all simplices satisfying a constraint of type
V3F4-1 the volume of Ty is locally minimal. The
minimum is not isolated: the set of locally minimal
volume simplices near X is a (d — 1)-dimensional
manifold.

3. Among all simplices satisfying a constraint of type
VEFdt1=k yith k > 3, the volume of T, is not
locally minimal.
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Proof. 1. As indicated above the perturbation parameters
are £, measuring the deviation of the n-th barycentric
coordinate of ¢™ from the value 1 —§7;* in the unperturbed
situation.

We fix the supporting planes oi f°, - -, f*1 *. Then for
1<m<d+1

¢h =0, for2<n<d+landn¥#m.

Therefore the normalization constraint _,—_, &7 = 0 im-
plies ¢} = 0. Using property BC, we easily derive
Vol(0)

dd
Since facet f! is constrained to contain p! = (1,0,-+,0)
we use property BCj to obtain

Vol(€) = d-E)d-€)--@d-€51). B

1 0 0
146 1-d+§ 1
0 = l-l'fi3 1 1
1468+ 1 1-d+£8H
d+1 1 )
= 1+ ) G d-€) -(@-gh). @
m=2 "M

In view of (3) and (4) 1/Vol(€) is maximal for  near 0 iff.
forl<m<d+1

1 1

o TR o -

gn-d d

i.e.if €™ = 0. But then also §* = 0. Therefore { = Qisan
isolated minimum of the volume function Vol(§).

2. Similar to the first part of the proof we derive

Vol(e) = P~ £ ~Dd - &)+ (@ - €41,

and

1 d+1 1
oy AP Dy

Therefore Vol(€) has a local minimum at § = 0, but the
minimum is not isolated. It is obvious from the equations
above that the set {¢ | Vol(¢) = Vol(0)} is a (d — 1)-
dimensional manifold.

3. The last part of the proof will be given below. s

The quadratic part of the volume func-
tion
To determine the nature of the singular point £ = 0 of the

volume function V in the presence of various types of con-
straints we need to know the second order terms of this

function V. (Obviously there are no linear terms.) In par-
ticular V has a local minimum if this second order part is
positive definite.

For convenience we scale the normalized barycentric
coordinates by inroducing new variabies ;" detined 101
1<mn<d+landm#nby:

m_ o

ﬂn =Em_d‘

Note that the coordinates n]* can range over a full neigh-
borhood of the origin ™ = 0,1 < m,n < d+1and
m # n, in IRY, i.e. they don't have to satisfy any con-
straint.

Theorem 4 If the faces of the simplex satisfy the default
constraint, i.e. p* is contained in the hyperplane support-
ingface f*, 1< k < d+1,then

d+1 1 d+1 Y
V) =VOU+ Y atam+5 D €M) +0(nl)
v;iz:nl m=1
where
def M
Cm é | nm
n#gEm

Proof of theorem 3 (continued): We shall give an exam-
ple of a simplex ¥, obtained by an arbitrarily small per-
turbation of the critical simplex Lo, satisfying a constraint
of type VX F4+1-k | > 3, such that Vol( Z) < Vol( o).

Let faces f!, f2 and f3 satisfy a constraint of type V.
We may fix the supporting hyperplanes of the remaining
faces, viz.for 1 < m < d+1 we take n* =0, for4 <
n < d+1and n ¥ m. Werestrict the number of degrees of
freedom of f1, f2 and f3 to0 1 by fixing (d — 2)-flats that
are the affine hulls of {p™,¢%,---,¢**'},for1 < m <
3. It is easy to check that these additional constraints fix
vertices g™, 4 < m < d+1,ie. g =0ford < m < d+1,
1 < n < n and n # m. We are now left with 3 degrees of
freedom. Taking n} = z,n3 = z and n} = z property BCs
can be used to prove ni = —z + O(z?), n? = —z + O(z?)
and n} = —z + O(z?), where z is a real variable ranging
over a neighborhood of 0 in IR. Then by definition we
have ¢(™ = O(z?) for all m. So the volume V is a function
of z satisfying (see theorem 4)

V(z) = V(0)(1 - 32%) + O(z>).

Hence V(z) < V(0) for sufficiently small z # 0. In other
words, the volume of X is not locally minimal. o



The 3-dimensional case

The results of the previous section can be applied to obtain
acharacterization of local minima in the 3-dimensional sit-
uation. in particular to determine when the volume func-
tion has a local minimum if we add several constraints of

type E.

Theorem 5§ Let X¢ be a critival simplex circumscribing
a polyhedron P. If the volume of Lo is locally minimal
then either P and L, have at least two flush faces, or their
contact is of type E3F or E*.

The proof of this theorem involves heavy calculations us-

ing the barycentric machinery developed above, especially
theorem 4. Using these calculations it is easy to construct
-examples of locally minimal circumscribing simplices of
any of the types referred to in the theorem.

An intermediate step in this proof is a geometric char-

- acterization of local minima of type E3F. Since it might

have some interest of its own, we state the result below.

q‘

Figure 1: A constraint of type E3F

Let g™, 1 < m < 4, be the vertices of a simplex, see
Figure 1. Each of the faccs 14 f2 and f* contains a line
through its centroid p!, p® and p®, respectively. These
Iines intersect the supportihfg plane of face f* in pointsa?,

a? and a3, respectively. We consider perturbations of this
sxmplcx in which the supporting ‘plane of face F4 is fixed
(constraint F'), and in which ea ning face is per-
turbed subject to the condition that its supporting planes
should contain the line through the centroid in the unper-
turbed situation (constraint £3),

Lemma } Consider tetrahedra satisfying a constraint of.
type E3F as described previously. For such tetrahedra let
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A be the ratio of the signed area of triangle a'a®a®, and
the area of the face whose supporting plane is fixed.
Among all tetrahedra that are perturbations of a critical
tetrahedron T and satisfy a constraint of type E*F the
volume of T is strictly locallv minimal iff

1
A>§'.

Concluding remarks

Further research is planned concerning the construction
of a globally minimal circumscribing simplex for a con-
vex polytope P, first of all in 3-space. In [4]! all local
minima with at least two flush faces are determined in
O(N3log N) time, where N is the number of vertices of
P. We also have an O(N3log N) method to determine

 all local minima of type E3F. The problem of finding all

local minima of type E* in o(N*) time is still open.
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