An optimal parallel algorithm for determining the
intersection type of two star-shaped polygons

Subir Kumar Ghosh* Anil Maheshwarit

1 Introduction

A frequently occurring problem in computation geometry is to determine whether two ge-
ometric objects intersect. If they intersect, the problem is to compute their common parts.
The intersection problem may be to compute the intersection or simply to detect an inter-
section between two objects. If the given objects are simple polygons of total n vertices,
it is possible to detect the boundary intersection in O(lo_gn) time using O(n) processors in
the CREW PRAM computatlon model [2]. If the given objects are convex polygons, the
common intersection region can be computed in O(logn) time using O(n/logn) processors
in the EREW PRAM computation model [3].

In this paper, we consider the following problem. Given two star-shaped polygons with
their respective star points, determine whether the boundaries of two star-shaped polygons
intersect, or one contains the other, or they are disjoint. We present an optimal parallel
algorithm for this problem that runs in O(logn) time using O(n/logn) processors in the
EREW PRAM computation model, where n is the total number of vertices of the polygons.

One of the steps of the algorithm is to compute the visibility polygon of a star-shaped
polygon from a point. The best known algorithm for this problem is given by Atallah and
Chen [1] and it is optimal. By exploiting the properties of star-shaped polygons, we design
a simple optimal parallel algorithm for this problem (in Section 3).

Two points a and b are said to be internally visible if both a and b belong to polygon
A and the line segment joining a and b lies inside A. If a is an exterior point of a polygon
A and b is a boundary point of A, then a and b are said to be ezternally visible if the
line segment joining a and b lies in the exterior A. If the line segment joining two points
touches the boundary of A, they are still considered to be visible. The visibility polygon of
A from a point b is the set of all points of A visible from b. A polygon A is star-shaped if
there exists a point a € A such that for any point b € A, b is internally visible from a; a
is called a star point of A. A ray is defined as the half-line drawn from a point a through
another point b and is denoted by Ray [a,b). A wedge is the region of the plane bounded
by two rays drawn from the same point. Given any three distinct points p; = (z:, %),
p; = (z;,y;) and pr = (Zx,yx), let § = z(v — ¥5) + ve(z; — 2:) + yj2: —wiz;. S > 0,

*Computer Science Group, Tata Institute of Fundamental Research, Bombay - 400 005, India, E-Mail :ghosh@tifrvax.bitnct

tComputer Systems and Communication Group, Tata Institute of Fundamental Research, Bombay - 400 005, India, E-Mail
: manil@tifrvax.bitnet

then p;p;pi is a left turn. If § < 0, then p;p;p; is a right turn. If S = 0, then the three
points are collinear.

2 An algorithm for determining the intersection type

Let A and B be two given star-shaped polygons. Let ay and by be the star points of A and
B respectively. We assume that the vertices of A and B are given in clockwise order with
their respective £ and y coordinates. If A or B is not known to be a star-shaped polygon
or their star points are not given, we use the parallel algorithm in [3] for computing the
kernel of a simple polygon to settle the issues. However, the algorithm in [3] assumes the
CREW PRAM model. So assuming that star points ao and by are given, our algorithm
runs in the EREW PRAM model. The symbol A (respectively, B) is used to denote the
region of the plane enclosed by A (respectively, B) and bd(A) (respectively, bd(B)) denotes
the boundary of A (respectively, B). We join ag and by by a line and the line segment ayb,
may or may not intersect bd(A) or bd(B). This leads to the following four cases.

Case 1: agb intersects both bd(A) and bd(B).

Case 2: agby intersects only bd(A).

Case 3: agb intersects only bd(B).

Case 4: agby does not intersect bd(A) and bd(B).

Consider Case 1. Since agby intersects both dd(A) and bd(B), either bd(A) intersects
bd(B) or A and B are disjoint. Take aq as the reference point. Let agby intersect bd(A)
and bd(B) at a' and b’ respectively. Define b,,;, (respectively, b.,..) to be a vertex of B
such that all vertices of B lie to the right (respectively, left) of Ray [ag,bmin) (respectively,
Ray (a9, bmez)) (Figure 1). The chain formed by the vertices of B from bin t0 bpaz in
counterclockwise order will be referred to as chain(dmin,dmaz). Let amin (respectively,
@maz) be the point of intersection of agbmin (respectively, agbmaz) and bd(A). Note that
if @gbmin OT aobmsr does not intersect bd(A), bd(A) intersects bd(B). So, we assume for
the rest of the algorithm for this case that bd(A) intersects both agbmin and agbma.. The
chain formed by vertices of A from @.,;, t0 @,n.z in clockwise order will be referred to as
chain(@min, Gmez)- It is a straightforward task to compute a', ¥, bniny bmazs Gminy Gmaz i
the CREW model in O(logn) time using O(n/logn) processors. It can also be computed in
O(logn) time using O(n/logn) processors using the standard simulation of CREW PRAMs
on the EREW PRAMs ([7]).

By testing for intersection between chain(@min,@maz) and chain(bmin,bmaz), it can be
decided whether A and B are intersecting or disjoint. By ignoring A, compute the external
boundary of B visible from ag by the algorithm in Section 3; call it vchain(bmin, dmaz)-
Lemma 1: (Ghosh [4]) chain(amin, Gmaz) intersects chain(bmin, bmaz) if and only if
chain(@min, @maz) intersects vchain(bmin, bmaz)-

Obtain the merged list by merging the vertices of chain(amin, @maz) and vchain(buin, bmaz)
by their relative polar angles with respect to ag. If we draw rays from ay through every
vertex of the merged list, these rays divide the plane into wedges. In every wedge, there
is an edge of chain(amin,amaz) and an edge of vchain(bmin, bmaz).- By checking for inter-
section between the pair of edges in each wedge, it can be decided whether A and B are
disjoint or intersecting. The merging of chain(@min,@maz) and vchain(bmin,bimaz) can be
done by the algorithm in [5]. Moreover, for every vertex a; (respectively, b;) of the merged

list the algorithm gives the vertex of B (respectxvely, A) in the merged list which precedes
a; (respectively, b;). It means that the pair of edges in each wedge is known. Usmg the
standard simulation of CREW PRAMs on EREW PRAM:s ([7]), the pair of edges in each
wedge can be stored with their respective vertices before checking the intersection.

Consider Case 2. Since agbo intersects only bd(A), either bd(A) intersects bd(B) or A is
contained in B. As ao belongs to both 4 and B, aq is chosen as the reference point (Figure
2). Let us denote the intersection point of agby and bd(A) as both @min and ame.- Further,
let us denote the point of intersection of 4d(B) and Raylao,bo) a8 both by, and byee. So,
cham(a,..,,,am) = bd(A) and chain(bmin, bmas) = bd(B), both traversed in the clockwise
direction. By ignoring A, we compute the internal visible boundary of B from ay; call it
Vchain(bmin, bmaz). Once chain(Gmin, Gmaz) and vchain(bmin,bmee) are obtained, merging
the vertices of both chains with respect to their relative polar angles at ay and detecting
the intersection between them follow as in Case 1.

Consider Case 3. Since aobo intersects only bd{B), either bd(A) intersects bd(B) or B
is contained in A. As by belongs to both A and B, b is taken as the reference point.
The rest of the computation is same as stated in Case 2 except the roles of A and B are
interchanged.

Consider Case 4. Since aghy does not intersect both bd(A) and bd(B), we extend agby
in either direction and denote the intersection point with bd(A) as o’ and that of bd(B)
as b'. If the length of a'ag is less than that of ¥ay, either bd(A) intersects dd{B) or A is
contained in B. This is same as Case 2. If the length of a'a, is greater than that of ¥ao,
then either bd(A) intersects bd(B) or B is contained in A. This is same as Case 3. Now
we formally state our algorithm Iniersection_type for determining the type of intersection
of two star-shaped polygons A and B.

Theorem 1: The intersection type of two star-shaped polygons can be determined in
O(logn) time using O(n/logn) processors in the EREW PRAM computational model,
where n is the total number of vertices of the polygons.

Remarks : The above algorithm can be used to detect the m‘bm'sectwn type of a star
polygon and a simple polygon, and computing the intersection region of a star polygon
and a convex polygon.

3 An algorithm for computing the visibility polygon

In this section we present a simple parallel algorithm for computing vehain(bmin,bmaz)
from &g in O(logn) time using O(n/logn) processors in the EREW PRAM computation
model. Observe that an edge of vchain(bmin,bmaz) i8 either partially or totally an edge
of chain(bmin, bmac), OT a segment b;z where ao, d; and z are collinear and 2 is a point on
chain(bmin, bmaz). So, the task of computing vchmn(b,m, binaz) from chain(Bin,bmes) is
to construct all such segments b;z.

Let chain(bmin,bmaz) = (b1,b2,....,b) where by = bnin and by = bypae. A vertex b; €
chain(bmin, bmaz) is said to be a left vertez if b;_, and b;y, are to the left of Raylay,b;)
and b;_1b;b;1 is a left turn. In Figure 3, left vertices are by, bys,b15, 017 and byg. Extend
“apb; from b; to chain(bmin,bmaz) and let z be the point of intersection. Then the segment
biz and the portion of the chain between b; and z (excluding b; and z) are called as left
segment and left chain respectively. A vertex b; € chain(bmin,bmac) i8 said to be a right

vertez if b;_; and b;4, are to the right of Ray [ag,b;) and b;_;b;b;,, is a left turn. In Figure
3, right vertices are b3, bs,b; and by. Analogously, we define a right segment and a right
chain. In the following lemma we show that if all left and right chains are removed from
chain(bmin, bmaz), the resulting chain is vchain(bmin, bmaz)-

Lemma 2: A vertex b; is visible from ao if and only if b; does not belong to a left or right
chain.

Now we state the procedure for locating left and right chains in chain(bmin, bmaz). For
every vertex b; in chain(bmin,bmaz) let a; be the clockwise angle subtended at ay by b;
with respect t0 agbmin. Let Smaz(i) denotes the maximum of ay,as,...,a;. We say a left
vertex b; is proper if a; = Spma-(i). In Figure 3, proper left vertices are b11,b:13 and byg.
Analogously, let Spin(i) denotes the minimum of oy, ;41,...,ax. We say a right vertex b;
is proper if a; = Smao(1). In Figure 3, proper right vertices are b, and be.

Lemma 3: A left vertex or a right vertex is visible from ay if and only if it is proper.
Corollary 1: The proper vertices are in the sorted angular order with respect to ag.

For every vertex b; in chain(bmin, bmas) store the angle a; in an array. The proper vertices
can be located by using the parallel prefix algorithm [6]. The remaining task is to construct
the left and right segments for every left and right proper vertices respectively. Since the
given polygons'are star-shaped, no two left and right chains overlap. This property helps
in computing left and right segments. Consider three consecutive proper vertices b;, b; and
bm where i < j < m. If b; is a left vertex, then the closest point to ay among the points
of intersection of Ray [ao, b;) with chain(bmin, dmaz) excluding b; lies on edge b,b,,,; where
J < 8 < m. Moreover, Ray [ao,b;) does not intersect any edge between b; and b,, except
bsbs41. Therefore every vertex between b; and b, lies to the left of Ray [ao,b;) and every
vertex between b,41 and by, lies to the right of Ray [ao,b;). If b; is a right vertex, then
the closest point to ap among the points of intersection of Ray [ao,b;) excluding b; with
chain(bmin, bmaz) lies on edge b,b,41 where i < s < j. For each vertex of chain(bmin, bmaz),
its previous and next proper vertices can be located by parallel prefix algorithm and then
all left and right segments can be computed by checking the intersection of each edge
with the corresponding ray. During the computation of left and right segments, mark the
vertices that belong to left or right chains and delete them by compacting the array to
obtain vchain(bmin, bmaz)

Theorem 2: The visibility polygon of an n-sided star-shaped polygon from a point can be
computed in O(logn) time using O(n/logn) processors in the EREW PRAM computation
model.

References

1. M.J. Atallah and D.Z. Chen, An optimal parallel algorithm for the visibility polygon
of a simple polygon from a point, Proc. of the fifth ACM Annual Symposium on
Computational geometry (1989) 114-123.

2. M.J. Atallah, R. Cole and M.T. Goodrich, Cascading divide-and-conquer: A technique
for designing parallel algorithms, SIAM Journal on Computing 18(1989) 499-532.

3. R. Cole and M.T. Goodrich, Optimal parallel algorithms for polygon and point-set
problems, Proc. of the fourth ACM Annual Symposium on Computational geometry
(1988) 201-210.

4. S. K. Ghosh, A linear-time algorithm for determining the intersection type of two star
polygons, Lecture Notes in Computer Science, Springer Verlag 181(1984) 317-330.

5. T. Hagerup and C. Riib, Optimal merging and sorting on the EREW PRAM, Infor-
mation Processing Letters 33(1989) 181-185.

6. R.M. Karp and V. Ramachandran, A survey of parallel algorithms for shared-memory
machines, Technical Report UCB/CSD 88/408, University of California, Berkeley,
1988.

7. U. Vishkin, Implementation of simultaneous memory address access in models that
forbid it, Journal of Algorithms 4(1983) 45-50.

Figure 1

bmax® bk

Figure 3

Figure 2

