An optimal parallel algorithm for determining the intersection type of two star-shaped polygons Subir Kumar Ghosh* Anil Maheshwari[†] #### 1 Introduction A frequently occurring problem in computation geometry is to determine whether two geometric objects intersect. If they intersect, the problem is to compute their common parts. The intersection problem may be to compute the intersection or simply to detect an intersection between two objects. If the given objects are simple polygons of total n vertices, it is possible to detect the boundary intersection in O(logn) time using O(n) processors in the CREW PRAM computation model [2]. If the given objects are convex polygons, the common intersection region can be computed in O(logn) time using O(n/logn) processors in the EREW PRAM computation model [3]. In this paper, we consider the following problem. Given two star-shaped polygons with their respective star points, determine whether the boundaries of two star-shaped polygons intersect, or one contains the other, or they are disjoint. We present an optimal parallel algorithm for this problem that runs in O(logn) time using O(n/logn) processors in the EREW PRAM computation model, where n is the total number of vertices of the polygons. One of the steps of the algorithm is to compute the visibility polygon of a star-shaped polygon from a point. The best known algorithm for this problem is given by Atallah and Chen [1] and it is optimal. By exploiting the properties of star-shaped polygons, we design a simple optimal parallel algorithm for this problem (in Section 3). Two points a and b are said to be internally visible if both a and b belong to polygon A and the line segment joining a and b lies inside A. If a is an exterior point of a polygon A and b is a boundary point of A, then a and b are said to be externally visible if the line segment joining a and b lies in the exterior A. If the line segment joining two points touches the boundary of A, they are still considered to be visible. The visibility polygon of A from a point b is the set of all points of A visible from b. A polygon A is star-shaped if there exists a point $a \in A$ such that for any point $b \in A$, b is internally visible from a; a is called a star point of A. A ray is defined as the half-line drawn from a point a through another point a and is denoted by a and a and a are given any three distinct points a and a and a are said to be externally visible from a; a is called a star point of a. A ray is defined as the half-line drawn from a point a through another point a and is denoted by a and a are said to be externally visible if the line segment joining two points touches the visible a and a are said to be externally visible if the line segment joining two points a is called a star point a and a such that for any point a is internally visible from a; a is called a star point of a. A ray is defined as the half-line drawn from a point a through another point a and a are said to be externally visible if the line segment joining a and a is a polygon of a. A ray is defined as the half-line drawn from a point a is called a star point a and a are said to be externally visible if the line segment joining a and a is an exterior point a and a are said to be externally visible if the line segment joining a and a are said to be externally visible if the line segment joining a and a are said to be externally visible if a and a are said to be externally visible if a and a are sai ^{*}Computer Science Group, Tata Institute of Fundamental Research, Bombay - 400 005, India, E-Mail :glosh@tifrvax.bitnet †Computer Systems and Communication Group, Tata Institute of Fundamental Research, Bombay - 400 005, India, E-Mail : manil@tifrvax.bitnet then $p_i p_j p_k$ is a left turn. If S < 0, then $p_i p_j p_k$ is a right turn. If S = 0, then the three points are collinear. ### 2 An algorithm for determining the intersection type Let A and B be two given star-shaped polygons. Let a_0 and b_0 be the star points of A and B respectively. We assume that the vertices of A and B are given in clockwise order with their respective x and y coordinates. If A or B is not known to be a star-shaped polygon or their star points are not given, we use the parallel algorithm in [3] for computing the kernel of a simple polygon to settle the issues. However, the algorithm in [3] assumes the CREW PRAM model. So assuming that star points a_0 and b_0 are given, our algorithm runs in the EREW PRAM model. The symbol A (respectively, B) is used to denote the region of the plane enclosed by A (respectively, B) and bd(A) (respectively, bd(B)) denotes the boundary of A (respectively, B). We join a_0 and b_0 by a line and the line segment a_0b_0 may or may not intersect bd(A) or bd(B). This leads to the following four cases. Case 1: a_0b_0 intersects both bd(A) and bd(B). Case 2: a_0b_0 intersects only bd(A). Case 3: a_0b_0 intersects only bd(B). Case 4: a_0b_0 does not intersect bd(A) and bd(B). Consider Case 1. Since a_0b_0 intersects both bd(A) and bd(B), either bd(A) intersects bd(B) or A and B are disjoint. Take a_0 as the reference point. Let a_0b_0 intersect bd(A) and bd(B) at a' and b' respectively. Define b_{min} (respectively, b_{max}) to be a vertex of B such that all vertices of B lie to the right (respectively, left) of $Ray [a_0, b_{min})$ (respectively, $Ray [a_0, b_{max})$) (Figure 1). The chain formed by the vertices of B from b_{min} to b_{max} in counterclockwise order will be referred to as $chain(b_{min}, b_{max})$. Let a_{min} (respectively, a_{max}) be the point of intersection of a_0b_{min} (respectively, a_0b_{max}) and bd(A). Note that if a_0b_{min} or a_0b_{max} does not intersect bd(A), bd(A) intersects bd(B). So, we assume for the rest of the algorithm for this case that bd(A) intersects both a_0b_{min} and a_0b_{max} . The chain formed by vertices of A from a_{min} to a_{max} in clockwise order will be referred to as $chain(a_{min}, a_{max})$. It is a straightforward task to compute a', b', b_{min} , b_{max} , a_{min} , a_{max} in the CREW model in O(logn) time using O(n/logn) processors. It can also be computed in O(logn) time using O(n/logn) processors using the standard simulation of CREW PRAMs on the EREW PRAMs ([7]). By testing for intersection between $chain(a_{min}, a_{max})$ and $chain(b_{min}, b_{max})$, it can be decided whether A and B are intersecting or disjoint. By ignoring A, compute the external boundary of B visible from a_0 by the algorithm in Section 3; call it $vchain(b_{min}, b_{max})$. Lemma 1: (Ghosh [4]) $chain(a_{min}, a_{max})$ intersects $chain(b_{min}, b_{max})$ if and only if $chain(a_{min}, a_{max})$ intersects $vchain(b_{min}, b_{max})$. Obtain the merged list by merging the vertices of $chain(a_{min}, a_{max})$ and $vchain(b_{min}, b_{max})$ by their relative polar angles with respect to a_0 . If we draw rays from a_0 through every vertex of the merged list, these rays divide the plane into wedges. In every wedge, there is an edge of $chain(a_{min}, a_{max})$ and an edge of $vchain(b_{min}, b_{max})$. By checking for intersection between the pair of edges in each wedge, it can be decided whether A and B are disjoint or intersecting. The merging of $chain(a_{min}, a_{max})$ and $vchain(b_{min}, b_{max})$ can be done by the algorithm in [5]. Moreover, for every vertex a_i (respectively, b_i) of the merged list the algorithm gives the vertex of B (respectively, A) in the merged list which precedes a_i (respectively, b_i). It means that the pair of edges in each wedge is known. Using the standard simulation of CREW PRAMs on EREW PRAMs ([7]), the pair of edges in each wedge can be stored with their respective vertices before checking the intersection. Consider Case 2. Since a_0b_0 intersects only bd(A), either bd(A) intersects bd(B) or A is contained in B. As a_0 belongs to both A and B, a_0 is chosen as the reference point (Figure 2). Let us denote the intersection point of a_0b_0 and bd(A) as both a_{min} and a_{max} . Further, let us denote the point of intersection of bd(B) and $Ray[a_0,b_0)$ as both b_{min} and b_{max} . So, $chain(a_{min},a_{max})=bd(A)$ and $chain(b_{min},b_{max})=bd(B)$, both traversed in the clockwise direction. By ignoring A, we compute the internal visible boundary of B from a_0 ; call it $vchain(b_{min},b_{max})$. Once $chain(a_{min},a_{max})$ and $vchain(b_{min},b_{max})$ are obtained, merging the vertices of both chains with respect to their relative polar angles at a_0 and detecting the intersection between them follow as in Case 1. Consider Case 3. Since a_0b_0 intersects only bd(B), either bd(A) intersects bd(B) or B is contained in A. As b_0 belongs to both A and B, b_0 is taken as the reference point. The rest of the computation is same as stated in Case 2 except the roles of A and B are interchanged. Consider Case 4. Since a_0b_0 does not intersect both bd(A) and bd(B), we extend a_0b_0 in either direction and denote the intersection point with bd(A) as a' and that of bd(B) as b'. If the length of $a'a_0$ is less than that of $b'a_0$, either bd(A) intersects bd(B) or A is contained in B. This is same as Case 2. If the length of $a'a_0$ is greater than that of $b'a_0$, then either bd(A) intersects bd(B) or B is contained in A. This is same as Case 3. Now we formally state our algorithm Intersection_type for determining the type of intersection of two star-shaped polygons A and B. Theorem 1: The intersection type of two star-shaped polygons can be determined in $O(\log n)$ time using $O(n/\log n)$ processors in the EREW PRAM computational model, where n is the total number of vertices of the polygons. Remarks: The above algorithm can be used to detect the intersection type of a star polygon and a simple polygon, and computing the intersection region of a star polygon and a convex polygon. ## 3 An algorithm for computing the visibility polygon In this section we present a simple parallel algorithm for computing $vchain(b_{min}, b_{max})$ from a_0 in O(logn) time using O(n/logn) processors in the EREW PRAM computation model. Observe that an edge of $vchain(b_{min}, b_{max})$ is either partially or totally an edge of $chain(b_{min}, b_{max})$, or a segment $b_i z$ where a_0 , b_i and z are collinear and z is a point on $chain(b_{min}, b_{max})$. So, the task of computing $vchain(b_{min}, b_{max})$ from $chain(b_{min}, b_{max})$ is to construct all such segments $b_i z$. Let $chain(b_{min}, b_{max}) = (b_1, b_2,, b_k)$ where $b_1 = b_{min}$ and $b_k = b_{max}$. A vertex $b_i \in chain(b_{min}, b_{max})$ is said to be a *left vertex* if b_{i-1} and b_{i+1} are to the left of $Ray[a_0, b_i)$ and $b_{i-1}b_ib_{i+1}$ is a left turn. In Figure 3, left vertices are $b_{11}, b_{13}, b_{15}, b_{17}$ and b_{19} . Extend a_0b_i from b_i to $chain(b_{min}, b_{max})$ and let z be the point of intersection. Then the segment b_iz and the portion of the chain between b_i and z (excluding b_i and z) are called as *left segment* and *left chain* respectively. A vertex $b_i \in chain(b_{min}, b_{max})$ is said to be a right 4 vertex if b_{i-1} and b_{i+1} are to the right of $Ray[a_0, b_i)$ and $b_{i-1}b_ib_{i+1}$ is a left turn. In Figure 3, right vertices are b_3, b_5, b_7 and b_9 . Analogously, we define a right segment and a right chain. In the following lemma we show that if all left and right chains are removed from $chain(b_{min}, b_{max})$, the resulting chain is $vchain(b_{min}, b_{max})$. Lemma 2: A vertex b_i is visible from a_0 if and only if b_i does not belong to a left or right chain. Now we state the procedure for locating left and right chains in $chain(b_{min}, b_{max})$. For every vertex b_i in $chain(b_{min}, b_{max})$ let α_i be the clockwise angle subtended at a_0 by b_i with respect to a_0b_{min} . Let $S_{max}(i)$ denotes the maximum of $\alpha_1, \alpha_2, ..., \alpha_i$. We say a left vertex b_i is proper if $\alpha_i = S_{max}(i)$. In Figure 3, proper left vertices are b_{11}, b_{13} and b_{19} . Analogously, let $S_{min}(i)$ denotes the minimum of $\alpha_i, \alpha_{i+1}, ..., \alpha_k$. We say a right vertex b_i is proper if $\alpha_i = S_{max}(i)$. In Figure 3, proper right vertices are b_7 and b_9 . Lemma 3: A left vertex or a right vertex is visible from a_0 if and only if it is proper. Corollary 1: The proper vertices are in the sorted angular order with respect to a_0 . For every vertex b_i in $chain(b_{min}, b_{max})$ store the angle α_i in an array. The proper vertices can be located by using the parallel prefix algorithm [6]. The remaining task is to construct the left and right segments for every left and right proper vertices respectively. Since the given polygons are star-shaped, no two left and right chains overlap. This property helps in computing left and right segments. Consider three consecutive proper vertices b_i , b_j and b_m where i < j < m. If b_j is a left vertex, then the closest point to a_0 among the points of intersection of $Ray[a_0, b_j)$ with $chain(b_{min}, b_{max})$ excluding b_j lies on edge $b_s b_{s+1}$ where j < s < m. Moreover, $Ray[a_0, b_j]$ does not intersect any edge between b_j and b_m except $b_s b_{s+1}$. Therefore every vertex between b_j and b_s lies to the left of $Ray[a_0, b_j]$ and every vertex between b_{s+1} and b_m lies to the right of $Ray[a_0,b_j)$. If b_j is a right vertex, then the closest point to a_0 among the points of intersection of $Ray[a_0,b_j)$ excluding b_j with $chain(b_{min}, b_{max})$ lies on edge $b_s b_{s+1}$ where $i \leq s < j$. For each vertex of $chain(b_{min}, b_{max})$, its previous and next proper vertices can be located by parallel prefix algorithm and then all left and right segments can be computed by checking the intersection of each edge with the corresponding ray. During the computation of left and right segments, mark the vertices that belong to left or right chains and delete them by compacting the array to $obtain\ vchain(b_{min},b_{max})$ Theorem 2: The visibility polygon of an n-sided star-shaped polygon from a point can be computed in $O(\log n)$ time using $O(n/\log n)$ processors in the EREW PRAM computation model. #### References - 1. M.J. Atallah and D.Z. Chen, An optimal parallel algorithm for the visibility polygon of a simple polygon from a point, Proc. of the fifth ACM Annual Symposium on Computational geometry (1989) 114-123. - 2. M.J. Atallah, R. Cole and M.T. Goodrich, Cascading divide-and-conquer: A technique for designing parallel algorithms, SIAM Journal on Computing 18(1989) 499-532. - 3. R. Cole and M.T. Goodrich, Optimal parallel algorithms for polygon and point-set problems, Proc. of the fourth ACM Annual Symposium on Computational geometry (1988) 201-210. - 4. S. K. Ghosh, A linear-time algorithm for determining the intersection type of two star polygons, Lecture Notes in Computer Science, Springer Verlag 181(1984) 317-330. - 5. T. Hagerup and C. Rüb, Optimal merging and sorting on the EREW PRAM, Information Processing Letters 33(1989) 181-185. - 6. R.M. Karp and V. Ramachandran, A survey of parallel algorithms for shared-memory machines, Technical Report UCB/CSD 88/408, University of California, Berkeley, 1988. - 7. U. Vishkin, Implementation of simultaneous memory address access in models that forbid it, Journal of Algorithms 4(1983) 45-50. Figure 2