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We present a topologically robust algorithm for dynamically maintaing a Voronoi diagram and its dual
Delaunay triangulation for a set of points moving independently in the plane along trajectories which are
analytic functions of time. Using rational parametrizations of surfaces one is also able to map the dynamic
planar Delaunay triangulations to dynamic Delaunay triangulations on surfaces. Constant velocity motion
of n points in the plane requires O(log n) time per topological change to maintain the Voronoi diagram. The
number of topological changes is bound by O(n) for a unit time step within which points can simultaneously
move at most into a single neighboring Voronoi cell. The algorithm has been implemented in Common Lisp
on a Symbolics 3620.

1 Introduction

For a static point set in the plane or in space, there exist various solutions to numerous geometric problems
including the computation of Voronoi diagrams and Delaunay triangulations, (see for e.g.[5, 7]). For a
dynamic set of points in the plane, many fewer algorithms are known. These include algorithms for computing
the time at which the convex hull of algebraically moving points in the plane reaches a steady state (1,
4], computation of all possible point coincidences for points moving in straight lines [6] and one and two
dimensional dynamic obstacle avoidance problems [8].

In this paper we describe a simple algorithm for dynamically maintaining a Voronoi diagram and its
dual Delaunay triangulation for a set of points moving independently in the plane along trajectories which
are analytic functions of time. Using rational parametrizations of surfaces [2] one is also able to map the
dynamic planar Delaunay triangulations to dynamic Delaunay triangulations on surfaces.

The algorithm relies on the key fact that changes in topology of the Voronoi diagram are occurrences or
events that happen at discrete intervals of time even though the points are moving continuously as analytic
functions of time. The basic idea then is to determine for an interval of time 7 the discrete times 7¢7 when
such topological events occur and in time-stamp order update the Voronoi diagram at 7 to a valid topology
for time after 7.
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2 ALGORITHMIC DETAILS

Our motivation in considering the dynamic Voronoi problem arose from our simulation of motion coor-
dination trajectories of multiple objects, simultaneously moving and avoiding collisions. Each object avoids
collisions with only his Voronoi neighbors. The dual dynamic Delaunay triangulations, particularly for
surfaces, provides dynamic triangular meshes for finite element calculations of time dependent problems.

2 Algorithmic Details
2.1 Notation

We use the term sites for the given points. The Voronoi diagram of the sites consists of a set of line segments
called bisectors. Each point on a bisector lies equidistant from two of the sites. An endpoint of a bisector, a
Voronoi vertex, is equidistant from three sites which are known as the generators of the vertex. Thus each
Voronoi vertex is the center of the circumscribing circle of its generators.

2.2 The Method

Let the given moving sites s; have coordinates (s;.pz(t), 5;.py(t)), 1 < i < n. The bisector B;; for each of two
adjacent sites s; and s; in the Voronoi diagram is said to vanish at the moment its two vertex endpoints v;
and vy become equal. The vanishing of any bisector B;; signals a topological occurence or event. Furthermore
all topological changes in the Voronoi diagram must involve the vanishing of some bisector.

Detection of a topological event is achieved as follows. Let Voronoi vertices v; and vy be the endpoints
of a bisector just prior to its vanishing. Consider v; as being generated by s;, s;, and some site sg. Likewise
consider v, as being generated by s;, s;, and some other site s;. It is easy to see from the Delaunay circle
property that v; = v, at precisely the time all the generators s;, s, sk, s lie on the same circle. Testing if
four points lie on a circle can be done by checking if the 4x4 determinant below is zero.

1 sipz sipy (si-px?+sipy?)

sj.pzr sjpy (sj.pz’+s;j.py°)
1 sipz se.py  (sk-pe® + sk-py’)
1 s.pz sipy  (s1.p2% + s1.py?)
To find the time a bisector vanishes we substitute the site equations into the determinant and solve the
resulting polynomial for ¢. Practically the 4x4 determinant calculation is replaced with an equivalent but
more numerically stable calculation involving three 2x2 determinants associated with Voronoi vertices (see
[9]). For efficiency, when we compute the three 2x2 determinants we store them with the associated Voronoi
vertex for future use in incident bisector vanish calculations. Suppose s;.pz(t) and s;.py(t) are the polyno-
mials describing the motion of site s; in the plane. The determinants for v generated by si, s;, and sj are
then:

J(si) 85,8k, 81) =

2
()= |FPY TS 1((si-pz — s1.p2)” + (si.py — si.-pv)")
s;.py—sk-py  3((sj.pz — sk p2)* + (s5.09 — sk )?)
Jo(t) = | P TSRS L((si-px — se-pz)” + (s0.09 — 5¢.79)%)
3 —
sipr— k.08 L((sj.pz — sp.pz)’ + (55.p9 — se-pv)°)
J4t) = $i.pT — Sk.pT  Si-PY — Sk-DY
4 5j.pT — Sk-pT 8;.pYy — Sk-PY
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If 5; is the other site (besides the generators of v) that is generating B;;, the polynomial that determines
when B;; will vanish is then :

J() = J2x(s;.px — sp.px) — J3* (s1.py — sk.Y)
1
+ g* J4x ((s1.pz — s.-pz) + (s1.py — sk.py)?)

If each pz and py are algebraic curves of maximum degree d in space-time coordinates, then the degree of
polynomial J is at most 4d. All other detection methods of the bisector vanishing that we considered yielded
polynomials of much higher degree.

Again, because of constant velocity motion of the sites, just after the vanishing of bisector B;;, a new
bisector By, is formed between s and s;. Thus a vanishing bisector event does not change the total number of
bisectors in the graph, and can be handled by a simple change of topological information for the associated
generator sites, which we call a swap. The two other bisectors incident to v; are Bj; and Bji; and the
bisectors incident to v, are By and Bj;. The data structure for the bisector holds its two vertices and the
two sites it divides. The structure for a vertex contains its three incident bisectors. The Voronoi diagram is
thus updated by replacing s; and s; with s; and s; in B;; to yield By;. We swap Bg; and By in v; and v2
and then swap v; and v in Bij and By.

BEFORE SWAP AFTER SWAP

2.3 Rational Algebraic Surfaces

Having obtained a dynamic Delaunay triangulation of moving sites in a plane one is able to transfer this
to a dynamic triangulation of points on a rational algebraic surface. Such triangulations prove invaluable
for time varying finite element analysis. A rational algebraic surface can be represented by the triple (z =
Gi(s,t),y = Ga(s,t), z = Gs(s,t)), where G, G2 and G3 are rational functions in s and ¢ with a common
denominator. See for example [2] for definitions and an extensive bibliography. Rational surfaces include
all degree two surfaces (e.g. spheres, cones, ellipsoids, hyperboloids, etc.), most degree three surfaces and
special degree four and higher degree surfaces (e.g. steiner). The sites are chosen in the s — ¢ plane and
correspond in a one-to-one manner to points (z,y, z) on the surface. Of course, bad points which are zeroes

of the denominator h(s,t) of the rational functions Gi(s,t) = %"—3, are avoided. These bad points are
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confined to a single real algebraic curve h(s,t) = 0 in the s — ¢ plane. Additionally a few other finite set of
bad points arise from the common real zeroes of g;(s,t) = k(s,t), i = 1,...,3.

Surface parameterizations are also invertible. That is there exist global rational functions H; and H»
such that s = Hy(z,y,2),t = Ha(z,y,2). See [3] where a method is given to construct such inverse mappings.
This inverse mapping enables control of the dynamic sites directly from points on the rational surface in
z,y,z space.

2.4 Complexity

Within a unit time step the total number of topological events is dependent on the number of Voronoi cells
crossed by all the sites. If we assume that each site crosses over to at most a neighboring Voronoi cell in a
unit time step, then the number of topological occurrences for the simultaneous motion of all sites is bound
by O(n). There is an inherent time-stamp ordering of topological events via the heap priority-queue which
results in an additional O(nlogn) processing time for all events. The update time of the Voronoi per event
is bound by O(logn) spent in maintaining the event priority-queue.

2.5 Implementation

The above algorithm is implemented on a Symbolics 3620 with a few additional enhancements for controlling
numerical precision. Bisector vanish times are computed by invoking a simple polynomial real roots solver.
To keep the degree of intermediate computation small, first order approximations are considered for complex
motion trajectories. Within each unit time step the motion is considered linear, i.e. constant velocity.
A unit time step is the maximum time required for any site to move into a neighboring cell. No apriori
velocity bounds are made, nor restrictions placed that all time steps are equal, allowing adaptive, curvature
dependent linear approximations of the trajectory. With the restriction that within each unit time step the
motion of the sites is with constant velocity, bisector vanish polynomial J has a maximum degree of 4. Thus
it is not too difficult to solve for all real roots to acceptable accuracy. The plausible bisector vanish times
(those between the current clock time and the end of the unit time step) are saved in a heap priorty-queue.
To eliminate special cases of Voronoi vertices at infinity, as well as vanishing bisectors at infinity, four dummy
sites are placed defining a bounding box enclosing the given sites and all their possible trajectories.

2.6 Degeneracies

There are rare ocassions when the bisector polynomial becomes identically zero during motion of sites (a
degeneracy). This occurs when two moving sites are at the same point at the same instant of time. The
rareness of this event can be seen from the fact that arbitrary lines in space seldom intersect (if and only if
the two lines are coplanar). Furthermore, line segments in space intersect if and only if their four endpoints
in space-time are collectively coplanar. Constant velocity motion of sites are straight line segments within
space-time coordinates z,y,t with the slope of the lines being the velocity. Knowing the starting and final
endpoints of each site and its velocity within a unit time step, the occurrences of degeneracies can be quickly
computed by checking for coplanarity of the endpoints (a 4x4 determinant calculation with linear entries).
If a degeneracy is possible then, the assigned velocity of the involved sites are slightly perturbed prior to
motion to eliminate the degenerate occurrence.

3 Conclusion

An indirect result of our dynamic algorithm is a new method to create Voronoi diagrams and Delaunay
triangulations for arbitrary distribution of points in a plane. We achieve this by placing the points initially
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in a regular pattern in the plane for which the diagram is obvious, then moving them in one time step to their
actual positions. Typically the points need not move very far in the intended applications for an optimal
O(n log n) computation of the Voronoi diagram.
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