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Abstract

For points in general position in the plane, we de-
scribe a family of cyclic orderings which are invari-
ant under isometries. We prove that the family
can contain at most 60 orderings. The entire fam-
ily of orderings can be built in O(nlog n) time in
O(n) space, where n is the number of points to be
ordered. The method used to generate the cyclic
orderings of points works for the vertex set of any
free tree embedded in the plane. We apply the
method to the Euclidean minimum spanning tree
for the points in general position to obtain our fam-
ily of cyclic orderings.

1 Motivation

The technique we will describe in this paper was
inspired by and imitates procedures of systematic
sampling from lists [KISH|. Coincidentally, one of
the important applications of our ordering proce-
dure is the systematic selection of subsets of points
in the plane for sampling purposes. Point sets cho-
sen by our procedure will exhibit excellent spatial
representativeness properties; and, morever, our
sample subsets will be independent of any coor-
dinate system that may affect and bias other sam-
pling strategies.

2 Algorithm Overview

We will describe and illustrate the algorithm by
performing it on a simple example. Suppose we
are given n points in the plane in general position,
such as shown in figure 1.

*The views expressed herein are the author’s and not
necessarily the views of the Bureau of the Census.
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Figure 1: Eight Points in “General Position”

2.1 Build EMST

Build their Euclidean minimum spanning tree, as
shown in figure 2, in time O(n log n), [AHO| and si-
multaneously sort the edges at each vertex in clock-
wise order. (General position of the points is used
to guarantee uniqueness of the EMST.)

Figure 2: The Euclidean Minimum Spanning Tree
for those Eight Points

2.2 Walk Eulerian Tour

Start anywhere on some edge and perform a two-
sided Eulerian tour of the tree. A two-sided Eu-
lerian tour walks every edge twice and visits each
vertex p deg(p) times, as shown in figure 3. Hav-
ing the edges sorted in clockwise order permits the
Eulerian tour to be made in linear time.!

‘INote: Garey and Johnson [GAREY] and others
[PREPARATA|, [EDELSBRUNNER] describe an ordering
based on a two-sided Eulerian tour which they use to ap-
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Figure 3: A Two-sided Eulerian Tour of the EMST

2.3 Build Auxiliary Interval

While making the Eulerian tour, build an interval
of total length n units as follows: each time ver-
tex p is visited on the tour, attach to the current
right-most end point r of the partially built inter-
val [0,7), a half-open interval [r,r + 1/deg(p)) of
length 1/deg(p) labeled “p” as shown in figure 4.
Since the number of visits any vertex receives dur-
ing the Eulerian tour is equal to its degree, the
total length of subintervals that correspond to any
individual vertex p will be deg(p) - 1/deg(p) = 1
unit; and the total length of all the subintervals
will be n, the total number of vertices.

Figure 5: The Successive Weighted Vertex Visits
Ordered Cyclically

the skipping point lands in a half-open subinterval
corresponding to p, as shown in figure 6.

Figure 4: The Successive Weighted Vertex Visits
of the Eulerian Tour

Attach the two ends of the composite interval to
make it cyclic. Notice that the cyclic interval we
have built up to this point is completely indepen-
dent of our initial starting point and of the position
of the point set in space—any translation, rotation,
scaling, or other transformation that preserves the
EMST will give us the same circular ordering of
half-open intervals, as shown in figure 5.

2.4 Select from Interval

Next choose an arbitrary starting point in this
cyclic interval of length n. Then select n points
by skipping along the cyclic interval one unit at a
time, adding the point p to our ordered list when

proximate a Euclidean Travelling Salesman Tour to within
a factor of 2, but the tour they describe is not canonical.
It depends on the starting point for the Eulerian Tour; and
changing the starting point may produce up to O(n) differ-
ent cyclic orderings.

Resuiting Ordering
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Figure 6: Vertex Ordering Based upon Skipping
along Cyclic Interval

The important features of our construction of
the cumulative interval are the following:

1. Every vertex is selected exactly once by
this procedure.

2. There are at most (up to cyclic permu-
tations) 60 orderings that can arise from
this procedure.

3 Proof Sketches
3.1 Ordering the Vertices

The proof that the selection procedure actually
produces an ordering of the vertices follows im-
mediately from the following lemma and its first
corollary.
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Lemma 8.1 (Integral-Branch-Weights)

The fractional vertez weights accumulated between
any two consecutive visits of the Eulerian tour to
a multivisited vertez always add up to an integer.

Proof: The proof of this lemma rests entirely on
the observation that between two consecutive vis-
its to any vertex, an entire branch emanating from
that vertex is completely consumed by the subwalk
of the Eulerian tour (i.e. every edge of the branch
is traveled twice.) The branch consumed is that
branch associated with the edge? that was both
“exiting” edge for the first visit and then “enter-
ing” edge for the second visit of the two consecutive
visits in question. Note that the “exiting” edge of
the first visit and the “entering” edge of the second
visit are always equal on consecutive visits of the
Eulerian tour, as shown in figure 7.

In consuming an entire branch, one must visit
every vertex in that branch as many times as pos-
sible, t.e. as many times as the degree of that
vertex. Thus each vertex in the branch gets fully
counted. In other words, the sum of weights for
all the visits for any individual vertex during the
walk of the branch is 1. And the sum of weights
for all the visits of all vertices during the walk of
the branch is an tnteger, equal to the number of
distinct vertices in the branch. O

Figure 7: A Consumed Branch Contains All Visits
of All Its Vertices

This lemma has two useful corollaries. To prove
the first corollary we will want to talk about the
fractional part of a number or an interval of num-
bers. Our meaning is the usual one: the fractional
part of 5.35 is 0.35. The fractional part of an in-
terval such as [17.32, 17.84) is just the set of all
possible fractional values: [0.32, 0.84).

2The branch associated with an edge out of a vertex
consists of all of the vertices and edges that can be reached
by a path from the vertex in question that starts along the
edge in question. The branch as we have defined it does not
include the starting vertex.

Corollary 3.2 Every vertez gets hit ezactly once
by skipping one unit at a time through the cyclic
n-interval.

Proof: Consider any vertex v of degree = k. Each
visit to the vertex will result in an interval of length
1/k being added to the cumulative interval. We
want to prove that, no matter where we fix a start
for our cyclic interval, the fractional parts of the
intervals corresponding to v in the total interval of
length n have no overlap. From lemma 3.1, it is
clear that each successive interval corresponding to
v has its fractional part begin where the fractional
part of the last interval corrsponding to v left off,
since an interval of integer length (i.e. having no
fractional part) corresponding to all of the vertices
of the branch consumed, has intervened. In fact,
the fractional parts of values assumed in the inter-
vals corresponding to any individual vertex must
span all of the values between 0 and 1. Thus any
real number r or integral augmentation r + m of
r can hit at most one of the k intervals of length
1/k; and there is exactly one integer m such that
r + mgo will hit one of the k intervals. O

The next corollary follows immediately from the
proof of the lemma.

Corollary 8.8 The collection of vertices of any
branch of the EMST always conststute a complete
tnterval (i.e. appear consecutively) for any cyclic
ordering produced by our ordering procedure.

In the above corollary, recall that a branch excludes
its starting vertex.

3.2 The Orderings are Few

The argument that there are at most sixty such
cyclic orders follows from the fact that the degree
of the vertices in a Euclidean minimum spanning
tree is at most 6 (or 5 if one insists on points be-
ing in general position). In either case, the least
common multiple of possible vertex degrees is 60;
and, therefore, on our cyclic cumulative interval,
we can imagine subdividing all of the intervals of
length 1/5 or 1/4 or 1/3 or 1/2 or 1 into subinter-
vals of length 1/60 (or of length 1/12 if there are no
vertices of degree 5), still labeling the subintervals
as before with the appropriate corresponding ver-
tex indentifier (see figure 8). Now it is clear that
there can be at most 60 effectively different ways



(12 ways, if no vertices have degree 5) of placing
our skip pattern. O
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Figure 8: Equal-sized Selection Bands of 1/12

4 TUseful Generalizations

4.1 Visits with Unequal Weights

We chose an equal weight of 1/ deg(p) for each visit
to a vertex so that the total weight of all visits
would add up to 1. However, as long as the total
weight of all visits adds to 1, the argument given
in the proof of Lemma 3.1 still holds. (This ob-
servation is due to Walid Aref.) So we have the
following stronger theorem:

Theorem 4.1 While making an Eulerian tour of
a tree, build a separate cyclic interval of total length
n units by assigning a non-negative wesght to each
vertez visit in any way so that the total weight for
all visits to any sndividual vertez s one. Then ev-
ery vertez gets hit ezactly once by skipping one unit
at a ttme through the cyclic n-interval.

4.2 Edge Orderings

Moreover, an identical argument can be made for
edges instead of vertices with each edge getting
weight exactly 1/2 (since every edge is visited twice
in the Eulerian Tour). But giving every edge
weight 1/2 amounts to nothing more than skip-
ping every other edge in our selection procedure.
So we have the following lemma:

Lemma 4.2 While making an Eulerian tour of a
tree, mark every other edge visited. Then every
edge gets marked ezactly once.
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If we consider ordering the edges of a tree using
this strategy, then consecutive edges in our order
are never more than link distance two apart! This
strategy may be extended to graphs as follows:
Take any connected graph and perform some node-
splitting operation to build a tree whose edges cor-
respond to the edges of the original graph. Then
the graph edges may be assigned a cyclic order
based on selecting alternate hits from an Eulerian
tour of the corresponding edges of the derived tree.

Since we can certainly split nodes in O(nlogn)
time using sorting and a plane sweep operation, we
can accomplish the following ordering for the edges
of any connected graph efficiently:

Corollary 4.3 One may find a cyclic ordering for
the edges of any connected graph tn O(nlogn) time
so that any two edges which are consecutive in
the cyclic ordering never have link distance greater
than two in the graph.
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